Skip to main content

Approach to the Diagnosis and Differentiation of Glaucomatous and Nonglaucomatous Optic Neuropathies

  • Chapter
  • First Online:
Optic Nerve Disorders

Abstract

Optic neuropathy denotes degeneration of the retinal ganglion cells with functional and structural impairment of the optic nerve. Functional damage of the optic nerve can be evaluated by checking visual acuity, color vision, pupillary function, and perimetric visual fields. Characteristic optic nerve head changes are usually evident in glaucomatous and nonglaucomatous optic neuropathies, and the loss of optic nerve fiber bundles can be confirmed and quantified with optical coherence tomography (OCT). Although an optic neuropathy can often be diagnosed with careful history taking and clinical examination, differentiating glaucomatous from nonglaucomatous optic neuropathies may not be straightforward. This chapter summarizes and highlights the important features of history taking, clinical examination, and investigation that are required to differentiate between glaucomatous and nonglaucomatous optic neuropathies. With increasing popularity of the use of spectral-domain OCT for the evaluation of glaucomatous and nonglaucomatous optic neuropathies, an update on its application to detect and monitor optic nerve degeneration is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck RW, Cleary PA, Anderson Jr MM, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med. 1992;326:581–8.

    Article  CAS  PubMed  Google Scholar 

  2. Greenfield DS, Siatkowski RM, Glaser JS, et al. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105:1866–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hayreh SS, Zimmerman MB. Nonarteritic anterior ischemic optic neuropathy: natural history of visual outcome. Ophthalmology. 2008;115:298–305.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Optic Neuritis Study Group. Visual function 15 years after optic neuritis: a final follow-up report from the optic neuritis treatment trial. Ophthalmology. 2008;115:1079–82.

    Article  Google Scholar 

  5. Berninger TA, Jaeger W, Krastel H. Electrophysiology and colourperimetry in dominant infantile optic atrophy. Br J Ophthalmol. 1991;75:49–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lee EJ, Kim SJ, Choung HK, et al. Incidence and clinical features of ethambutol-induced optic neuropathy in Korea. J Neuroophthalmol. 2008;28:269–77.

    Article  PubMed  Google Scholar 

  7. Chang DS, Xu L, Boland MV, Friedman DS. Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology. 2013;120:2217–25.

    Article  PubMed  Google Scholar 

  8. Weinreb RN, Brandt JD, Garway-heath D, editors. Intraocular pressure. Consensus series 4. The Hague, The Netherlands: Kugler Publications; 2007. p. 17–58.

    Google Scholar 

  9. Park SJ, Ang GS, Nicholas S, et al. The effect of thin, thick, and normal corneas on Goldmann intraocular pressure measurements and correction formulae in individual eyes. Ophthalmology. 2012;119:443–9.

    Article  PubMed  Google Scholar 

  10. Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Investig Ophthalmol Vis Sci. 2003;44:3790–4.

    Article  Google Scholar 

  11. Kniestedt C, Nee M, Stamper RL. Dynamic contour tonometry: a comparative study on human cadaver eyes. Arch Ophthalmol. 2004;122:1287–93.

    Article  PubMed  Google Scholar 

  12. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–50.

    Article  CAS  PubMed  Google Scholar 

  14. Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83:755–62.

    CAS  PubMed  Google Scholar 

  15. Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.

    Article  PubMed  Google Scholar 

  16. Ahmed II, Feldman F, Kucharczyk W, Trope GE. Neuroradiologic screening in normal-pressure glaucoma: study results and literature review. J Glaucoma. 2002;11:279–86.

    Article  PubMed  Google Scholar 

  17. Hood DC, Chen JY, Yang EB, et al. The role of the multifocal visual evoked potential (mfVEP) latency in understanding optic nerve and retinal diseases. Trans Am Ophthalmol Soc. 2006;104:71–7.

    PubMed Central  PubMed  Google Scholar 

  18. Bach M, Poloschek CM. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013;353:287–96.

    Google Scholar 

  19. Wang J, Cheng H, Hu YS, et al. The photopic negative response of the flash electroretinogram in multiple sclerosis. Investig Ophthalmol Vis Sci. 2012;53:1315–23.

    Article  Google Scholar 

  20. Kiss S, Damico FM, Young LH. Ocular manifestations and treatment of syphilis. Semin Ophthalmol. 2005;20:161–7.

    Article  PubMed  Google Scholar 

  21. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103:1889–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.

    Article  PubMed  Google Scholar 

  23. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu N, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography – analysis of the RNFL Map for glaucoma detection. Ophthalmology. 2010;117:1684–91.

    Article  PubMed  Google Scholar 

  24. Cheung CY, Leung CK, Lin D, Pang CP, Lam DS. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology. 2008;115:1347–51.

    Article  PubMed  Google Scholar 

  25. Cheung CY, Chan N, Leung CK. Retinal nerve fiber layer imaging with spectral‐domain optical coherence tomography – Effect of signal strength on analysis of the RNFL map. Asia-Pac J Ophthalmol. 2012;1:19–23.

    Article  Google Scholar 

  26. Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography – pattern of RNFL defects in Glaucoma. Ophthalmology. 2010;117:2337–44.

    Article  PubMed  Google Scholar 

  27. Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of RNFL progression. Ophthalmology. 2012;119:1858–66.

    Article  PubMed  Google Scholar 

  28. Medeiros FA, Zangwill LM, Alencar LM, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Investig Ophthalmol Vis Sci. 2009;50:5741–8.

    Article  Google Scholar 

  29. Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investig Ophthalmol Vis Sci. 2010;51:217–22.

    Article  Google Scholar 

  30. Leung CK, Liu S, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.

    Article  PubMed  Google Scholar 

  31. Lee EJ, Kim TW, Weinreb RN, et al. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Investig Ophthalmol Vis Sci. 2011;52:1138–44.

    Article  Google Scholar 

  32. Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.

    Article  PubMed  Google Scholar 

  33. Grewal DS, Sehi M, Paauw JD, Greenfield DS. Advanced Imaging in Glaucoma Study Group. detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. J Glaucoma. 2012;21:214–20.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Chan CK, Miller NR. Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuroophthalmol. 2007;27:176–9.

    Article  PubMed  Google Scholar 

  35. Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119:731–7.

    Article  PubMed  Google Scholar 

  36. Leung CK, Yu M, Weinreb RN, Mak HK, Lai G, Ye C, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Investig Ophthalmol Vis Sci. 2012;53:7194–200.

    Article  Google Scholar 

  37. Scherer RW, Feldon SE, Levin L, et al. Visual fields at follow-up in the Ischemic optic neuropathy decompression trial: evaluation of change in pattern defect and severity over time. Ophthalmology. 2008;115:1809–17.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sadun AA. Metabolic optic neuropathies. Semin Ophthalmol. 2002;17:29–32.

    Article  PubMed  Google Scholar 

  39. Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30:81–114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Disclosures

C.L.: Speaker honorarium—Carl Zeiss Meditec, Heidelberg Engineering, Topcon; Research support—Carl Zeiss Meditec, Optovue, Tomey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Kai Shun Leung M.D., M.B.Ch.B., B.MedSc., M.Sc., F.H.K.A.M., F.H.K.C.Ophth. or Carmen K. M. Chan M.B.BChir., M.R.C.P., F.R.C.S.Ed(Ophth). .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leung, C.K.S., Chan, C.K.M. (2014). Approach to the Diagnosis and Differentiation of Glaucomatous and Nonglaucomatous Optic Neuropathies. In: Chan, J. (eds) Optic Nerve Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0691-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0691-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0690-7

  • Online ISBN: 978-1-4614-0691-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics