Skip to main content

Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes

  • Chapter
Peritoneal Carcinomatosis: Principles of Management

Part of the book series: Cancer Treatment and Research ((CTAR,volume 82))

Abstract

Cancer of the ovary is responsible for the highest proportion of the mortality in patients with gynecologic malignancies. The overall survival for these patients at 5 years is 39% [1]. Epithelial ovarian carcinoma (EOC) represents 90% of the histologies and is thus the most frequent histologic group. Primary peritoneal carcinoma, also called extraovarian mullerian carcinoma, has the same pattern of tumor spread and sensitivity to chemotherapy as EOC, although the ovaries are not primarily involved in the pathologic process. Other malignancies that originate from the ovaries include those of germ cell and stromal cell origin. These are considered separately and have a different clinical presentation and a different response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boring CC, Squires TS, Tong T, Montgomery S. Cancer statistics. CA Cancer J Clinicians 1993;43:7–26.

    Article  CAS  Google Scholar 

  2. Hainsworth JD, Grosh WW, Burnett LS, Jones HW, Wolff SN, Greco FA. Advanced ovarian cancer: Long-term results of treatment with intensive cisplatin-based chemotherapy of brief duration. Ann Intern Med 1988;108:165–170.

    PubMed  CAS  Google Scholar 

  3. Conte PF, Bruzzone M, Camino F, Chiara S, Donadio M, Facchini V, Fioretti P, Foglia G, Gadducci A, Gallo L. Carboplatin, doxorubicin, and cyclophosphamide: A randomized trial in stage III-IV epithelial ovarian carcinoma. J Clin Oncol 1991;9:658–663.

    PubMed  CAS  Google Scholar 

  4. Ozols RF, Young RC. Ovarian cancer. Curr Probl Cancer 1987;11:59–122.

    Article  Google Scholar 

  5. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower HC. Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 1989;111:273–279.

    PubMed  CAS  Google Scholar 

  6. Pazdur R, Kudelka AP, Kavanagh JJ, Cohen PR, Raber MN. The taxoids: Paclitaxel (Taxol®) and docetaxel (Taxotere). Cancer Treatment Rev 1993;19:351–386.

    Article  CAS  Google Scholar 

  7. Freedman RS, Ioannides CG, Mathioudakis G, Platsoucas CD. Novel immunologic strategies in ovarian carcinoma. Am J Obstet Gynecol 1992;167:1470–1478.

    PubMed  CAS  Google Scholar 

  8. Goldstein D, Laszlo J. The role of interferon in cancer therapy: A current perspective. CA Cancer J Clin 1988;38:258–277,

    Article  PubMed  Google Scholar 

  9. Borden EC, Sondei PM. Lymphokines and cytokines as cancer treatment. Immunotherapy realized. Cancer 1990;65:800–814.

    Article  PubMed  CAS  Google Scholar 

  10. Nomenclature Committee of the 4th International Workshop on Human Leukocyte Differentiation Antigens. Workshop antigen designation. J Immunol 1989;143:758–759.

    Google Scholar 

  11. Foon KA. Biological response modifiers: The new immunotherapy, Cancer Res 1989;49: 1621–1639.

    PubMed  CAS  Google Scholar 

  12. Bast RC Jr, Knapp RC. The emerging role of monoclonal antibodies in the clinical management of epithelial ovarian carcinoma. In ●●, eds. Important Advances in Oncology, Philadelphia: JB Lippincott, 1987, pp 39–53.

    Google Scholar 

  13. Freedman RS, Ioannides CG, Tomasovic B, Patenia R, Zhang H-Z, Liang JC, Edwards CL, Development of a cell surface reacting human monoclonal antibody recognizing ovarian and certain other malignancies. Hybridoma 1991;10:21–33.

    Article  PubMed  CAS  Google Scholar 

  14. Platsoucas CD, Freedman RS. Tumor-infiltrating lymphocytes in gene therapy. Cancer Bull 1993;45:118–124.

    Google Scholar 

  15. Rosenberg SA. Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine-activated killer cells. In Devita VT, Hellman S, Rosenberg SA, eds. Important Advances in Oncology. Philadelphia; JB Lippincott, 1988, pp 217–257.

    Google Scholar 

  16. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpton CG, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone, N Engl J Med 1987;316:889–897.

    Article  PubMed  CAS  Google Scholar 

  17. Fisher RI, Coliman CA, Doroshow JH, Rayner AA, Hawkins MJ, Mier JW, Wiernik P, McMannis JD, Weiss GR, Margolin K, Gemlo NT, Hoth DF, Parkinson PR, Paietta E, Metastatic renal cancer treated with interleukin-2 and lymphokine activated killer cells: A phase II clinical trial. Ann Intern Med 1988;108:518–523.

    PubMed  CAS  Google Scholar 

  18. Steiss RG, Urba WJ, VanderMolen LA, Bookman MA, Smith JW, Clark JW, Miller RL, Crum ED, Beckner SK, McKnight JE. Intraperitoneal lymphokine-activated killer-cell and interleukin-2 therapy for malignancies limited to the peritoneal cavity, J Clin Oncol 1990;8:1618–1629.

    Google Scholar 

  19. Stewart JA, Belinson JL, Moore AL, Dorighi JA, Grant BW, Haugh LP, Roberts, JD, Albertini RJ, Branda RF. Phase I trial of intraperitoneal recombinant interleukin-2/ lymphokine-activated killer cells in patients with ovarian cancer. Cancer Res 1990;50:6302–6310.

    PubMed  CAS  Google Scholar 

  20. Sznol M, Dutcher JP, Atkins MB, Rayner AR, Margolin KA, Gaynor ER, Weiss GR, Aronson F, Parkinson DR, Hawkins MJ. Review of interleukin-2 alone and interleukin-2/LAK clinical trials in metastatic malignant melanoma. Cancer Treat Rev 1989;●●(Suppl A):29–38.

    Google Scholar 

  21. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Peitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993;85:622–632 [published erratum appears in J Natl Cancer Inst 1993;85:1091].

    Article  PubMed  CAS  Google Scholar 

  22. Platsoucas CD. Autologous tumor-specific T cells in malignant melanoma. Cancer Metastasis Rev 1991;10:151–176.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenberg SA, Spiess P, Lafrieniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986;233:1318–1321.

    Article  PubMed  CAS  Google Scholar 

  24. Spiess PJ, Yang JC, Rosenberg S. Tumor infiltrating lymphocytes expanded in recombinant interleukin-2 mediate potent anti-tumor activity in vivo. Cancer Res 1988;48: 206–212.

    Google Scholar 

  25. Rosenberg SA, Packard BS, Aebersold PM. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988;319:1676–1680.

    Article  PubMed  CAS  Google Scholar 

  26. Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon P. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: A pilot study. J Clin Oncol 1988;6:839–853.

    PubMed  CAS  Google Scholar 

  27. Aebersold P, Hyatt C, Johnson S, Hines K, Korcak L, Sanders M, Lotze M, Topalian S, Yang J, Rosenberg SA. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: Association with clinical response. J Natl Cancer Inst 1991;83:932–937.

    Article  PubMed  CAS  Google Scholar 

  28. Kradin RL, Kurnick JT, Lazarus DS, Preffer FI, Dubinett SM, Pinto CE, Gifford J, Davidson E, Grove B, Callahan RJ. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1989;1:577–580.

    Article  PubMed  CAS  Google Scholar 

  29. Aoki Y, Takakuwa K, Kodama S, Tanaka K, Takahashi M, Tokunaga A, Takahashi T. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res 1991;51:1934–1939.

    PubMed  CAS  Google Scholar 

  30. Freedman RS, Tomasovic B, Templin S, Atkinson EN, Kudelka A, Edwards CL, Platsoucas CD. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Methods 1994;167:145–160.

    Article  PubMed  CAS  Google Scholar 

  31. Ioannides CG, Freedman RS, Platsoucas CD, Kim Y-P. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J Immunol 1991;146:1700–1707.

    PubMed  CAS  Google Scholar 

  32. Ioannides CG, Platsoucas CD, Rashed S, Wharton JT, Edwards CL, Freedman RS. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res 1991; 51:4257–4265.

    PubMed  CAS  Google Scholar 

  33. Allavena P, Zanaboni F, Rossini S, Merendino A, Bonazzi C, Vassena L, Mangioni C, Mantovani A. Lymphokine-activated killer activity of tumor-associated and peripheral blood lymphocytes isolated from patients with ascites ovarian tumors. J Natl Cancer Inst 1986;77:863–868.

    PubMed  CAS  Google Scholar 

  34. Heo DS, Whiteside TL, Kanbour A, Herberman RB. Lymphocytes infiltrating human ovarian tumors. I. Role of Leu-19 (NKH1) positive recombinant IL-2 activated cultures of lymphocytes infiltrating human ovarian tumors. J Immunol 1988;140:4042–4049.

    PubMed  CAS  Google Scholar 

  35. Wang Y-L, Si LS, Kanbour A, Herberman RB, Whiteside TL. Lymphocytes infiltrating human ovarian tumors: Synergy between tumor necrosis factor alpha and interleukin-2 in the generation of CD8+ effectors from tumor-infiltrating lymphocytes. Cancer Res 1989; 49:5979–5985.

    PubMed  CAS  Google Scholar 

  36. Ferrini S, Biassoni R, Moretta A, Bruzzone M, Nicolin A, Moretta L. Clonal analysis of T lymphocytes isolated from ovarian carcinoma ascitic fluid. Phenotype and functional characterization of T-cell clones capable of lysing autologous carcinoma cells. Int J Cancer 1985;36:337–343.

    PubMed  CAS  Google Scholar 

  37. Peoples GE, Goedegebuure PS, Andrews JVR, Schoof DD, Eberlein TJ. HLA-A2 presents shared tumor-associated antigens derived from endogenous proteins in ovarian cancer. J Immunol 1993;151:5481–5491.

    PubMed  CAS  Google Scholar 

  38. Peoples GE, Davey MP, Goedegebuure PS, Schoof DD, Eberlein TJ. T cell receptor Vß2 and Vβ6 mediate tumor-specific cytotoxicity by tumor-infiltrating lymphocytes in ovarian cancer. J Immunol 1993;151:5472–5480.

    PubMed  CAS  Google Scholar 

  39. Kooi S, Freedman RS, Rodriguez-Villanueva J, Platsoucas CD. Cytokine production by T-cell lines derived from tumor-infiltrating lymphocytes from patients with ovarian carcinoma: Tumor-specific immune responses and inhibition of antigen-independent cytokine production by tumor cells. Lymphokine Cytokine Res 1993;12:429–437.

    PubMed  CAS  Google Scholar 

  40. Schwartzentruber D, Topalian S, Mancini M, Rosenberg SA. Specific release of granulocyte macrophage colony stimulating factor, tumor necrosis factor a, and interferons by human tumor infiltrating lymphocytes after autologous tumor stimulation. J Immunol 1991;140:3674–3682.

    Google Scholar 

  41. Horn SS, Schwartzentruber DJ, Rosenberg SA, Topalian SL. Specific release of cytokines by lymphocytes infiltrating human melanomas in response to shared melanoma antigens. J Immunother 1993;13:18–30.

    Article  Google Scholar 

  42. Kerhl JH, Wakefield LM, Roberts AB, Jakowlew SB, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T-cell growth. J Exp Med 1986;163: 1037–1050.

    Article  Google Scholar 

  43. Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, Ellingsworth L, Schmidt JA, Hall G, Roberts AB, Sporn MB. Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J Immunol 1988;140:3026–3032.

    PubMed  CAS  Google Scholar 

  44. Platsoucas CD, Fox FE. Human suppressor factors inhibiting T cell proliferation and antibody production. Cancer Bull 1991;43:17–24.

    Google Scholar 

  45. Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, Gerdin B, Kiessling R. Selective expression of interleukin-10, interferon-γ, and granulocyte-macrophage colony-stimulating factor in ovarian cancer biopsies. Proc Natl Acad Sci USA 1992;89:7708–7712.

    Article  PubMed  CAS  Google Scholar 

  46. Shimonkevitz R, Kappler J, Marrack P, Grey HM. Antigen recognition by H-2-restricted T cells. J Exp Med 1983;158:303–316.

    Article  PubMed  CAS  Google Scholar 

  47. Allen PM, Strydom DJ, Unanue ER. Processing of lysozyme by macrophages: Identification of the determinant recognized by two T-cell hybridomas. Proc Natl Acad Sci USA 1984;81:2489–2493.

    Article  PubMed  CAS  Google Scholar 

  48. Townsend ARM, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986;44:959–968.

    Article  PubMed  CAS  Google Scholar 

  49. Nixon DF, Townsend AR, Elvin JG, Rizza CR, Gallwey J, McMichael AJ. HIV-1 gag specific CTL defined with recombinant vaccinia virus and synthetic peptides. Nature 1988;336:484–487.

    Article  PubMed  CAS  Google Scholar 

  50. Itoh K, Platsoucas CD, Balch CM. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. Activation by interleukin-2 and autologous tumor cells, and involvement of the T cell receptor. J Exp Med 1988;168:1419–1441.

    Article  PubMed  CAS  Google Scholar 

  51. Wolfel T, Klehman E, Muller C, Schutt KH, Meyer-zum-Buschenfelde KH, Knuth A. Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med 1989;170:797–810.

    Article  PubMed  CAS  Google Scholar 

  52. Crowley NJ, Slingluff CL Jr, Darrow TL, Seigier HF. Generation of human autologous melanoma specific cytotoxic T cells using HLA-A2 matched allogeneic melanomas. Cancer Res 1990;50:492–498.

    PubMed  CAS  Google Scholar 

  53. Darrow T, Slingluff CL Jr, Seigler HF. The role of HLA class I antigens in recognition of melanoma cells by tumro specific cytotoxic T lymphocytes. Evidence for shared tumor antigens. J Immunol 1989;142:3329–35.

    PubMed  CAS  Google Scholar 

  54. Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2. 1-transfected melanomas. J Immunol 1992;148:638–643.

    PubMed  CAS  Google Scholar 

  55. Viret C, Davodeau F, Guilloux Y, Bignon J-D, Semana G, Breathnach R, Jotereau F. Recognition of shared melanoma antigen by HLA-A2-restricted cytolytic T cell clones derived from human tumor-infiltrating lymphocytes. Eur J Immunol 1993;23:141–146.

    Article  PubMed  CAS  Google Scholar 

  56. Uyttenhove C, Van Snick J, Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J Exp Med 1980;152: 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  57. Boon T. Antigenic tumor cell variants obtained with mutagens. Adv Cancer Res 1983;39: 121–151.

    Article  PubMed  CAS  Google Scholar 

  58. Wolfel T, Van Pen A, De Plaen E, Lurquin C, Maryanski JL, Boon T. Immunogenic (tum-) variants obtained by mutagenesis of mouse mastocytoma P815. Immunogenetics 1987;26:178–187.

    Article  PubMed  CAS  Google Scholar 

  59. De Plaen E, Lurquin C, Van Pel A, Mariame B, Szikora JP, Wolfel T, Sibille C, Chomez P, Boon T. Immunogenic (turn-) variants of ouse tumor P815: Cloning of the gene of turn- antigen P91A and identification of the turn- mutation. Proc Natl Acad Sci USA 1988;85:2274–2278.

    Article  PubMed  Google Scholar 

  60. Lurquin C, Van Pel A, Mariame B, DePlaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T. Structure of the gene of turn- transplantation antigen P91A: The mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 1989;58: 293–303.

    Article  PubMed  CAS  Google Scholar 

  61. Sibille C, Chomez P, Wildmann C, VanPel A, DePlaen E, Maryanski JL, deBergeyck V, Boon T. Structure of the gene of tum- transplantation antigen P198: A point mutation generates a new antigenic peptide. J Exp Med 1990;172:35–45.

    Article  PubMed  CAS  Google Scholar 

  62. Szikora J-P, Van Pel A, Brichard V, Andre M, VanBaren N, Henry P, DePlaen E, Boon T. Structure of the gene of tum- transplantation antigen P35B: Presence of a point mutation in the antigenic allele. EMBO J 1990;9:1041–1050.

    PubMed  CAS  Google Scholar 

  63. Van den Eynde B, Lethe B, Van Pel A, De Plaen E, Boon T. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991;173:1373–1384.

    Article  PubMed  Google Scholar 

  64. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon A. A gene encoding an antigen recognized by cytolytic T cells on a human melanoma. Science 1991;254:1643–1647.

    Article  PubMed  Google Scholar 

  65. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, Coulie P, Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993;178:489–495.

    Article  PubMed  CAS  Google Scholar 

  66. Bakker ABH, Schreurs MWJ, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994;179:1005–1009.

    Article  PubMed  CAS  Google Scholar 

  67. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA. Identification of the immunodominant peptides of the MART-1 human melanom antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994;180:347–352.

    Article  PubMed  CAS  Google Scholar 

  68. Coulie PG, Brichard V, Van Pel A, Wolfel T, Schneider J, Traversari C, Mattei S, De Plaen E, Lurquin C, Szikora JP, Renauld JC, Boon T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994;180:35–42.

    Article  PubMed  CAS  Google Scholar 

  69. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987;329:512–518.

    Article  PubMed  CAS  Google Scholar 

  70. Bouillot M, Choppin J, Cornille F, Martinon F, Papo T, Gomard E, Fournie-Zaluski MC, Levy JP. Physical association between MHC class I molecules and immunogenic peptides. Nature 1989;339:473–475.

    Article  PubMed  CAS  Google Scholar 

  71. Matsumura M, Fremont DH, Peterson PA, Wilson IA. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 1992;257:927–934.

    Article  PubMed  CAS  Google Scholar 

  72. Bhan AK, Des Marais CL. Immunohistologic characterization of major histocompatibility antigens and inflammatory cellular infiltrate in human breast cancer. J Natl Cancer Inst 1983;71:507–516.

    PubMed  CAS  Google Scholar 

  73. Whitwell HL, Hughes HPA, Moore M, Ahmed A. Expression of major histocompatibility antigens and leucocyte infiltration in benign and malignant human breast disease. Br J Cancer 1984;49:161–172.

    Article  PubMed  CAS  Google Scholar 

  74. Natali PG, Nicotra MR, Bigotti A, Venturo I, Marcenaro L, Giacomina P, Russo C. Selective changes in expression of HLA class I polymorphic determinants in human solid tumors. Proc Natl Acad Sci USA 1989;86:6719–6723.

    Article  PubMed  CAS  Google Scholar 

  75. Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 1991;51:4712–4715.

    PubMed  CAS  Google Scholar 

  76. Cordon-Cardo C, Fuks Z, Drobnjak M, Moreno C, Eisenbach L, Feldman M. Expression of HLA-A,B,C antigens on primary and metastatic tumor cell populations of human carcinomas. Cancer Res 1991;51:6372–6380.

    PubMed  CAS  Google Scholar 

  77. Mitchell M, Harel W, Groshen S. Association of HLA phenotype with response to active specific immunotherapy of melanoma. J Clin Oncol 1992;10:1158–1164.

    PubMed  CAS  Google Scholar 

  78. Tomita Y, Nishiyama T, Fujiwara M, Sato S. Immunohistochemical detection of major histocompatibility complex antigens and quantitative analysis of tumour-infiltrating mononuclear cells in renal cell cancer. Br J Cancer 1990;62:354–359.

    Article  PubMed  CAS  Google Scholar 

  79. Wang P, Vánky F, Li S-L, Végh Z, Persson U, Klein E. Expression of MHC-class-I antigens in human carcinomas and sarcomas analyzed by isoelectric focusing. Int J Cancer 1991;6:106–116.

    Article  CAS  Google Scholar 

  80. Ferguson A, Moore M, Fox H. Expression of MHC products and leucocyte differentiation antigens in gynaecological meoplasms: An immunohistological analysis of the tumour cells and infiltrating leucocytes. Br J Cancer 1985;52:551–563.

    Article  PubMed  CAS  Google Scholar 

  81. Végh Z, Wang P, Vánky F, Klein E. Selectively down-regulated expression of major histocompatibility complex class I alleles in human solid tumors. Cancer Res 1993;53: 2416–2420.

    PubMed  Google Scholar 

  82. Wang P, Vánky F, Végh Z, Perrson U, History CH, Klein E. Assembly of MHC class I molecules in ex vivo carcinoma cells induced by IFN-y or by a binding peptide. Cell Immunol 1992;142:296–302.

    Article  PubMed  CAS  Google Scholar 

  83. Kooi S, Zhang H-Z, Patenia R, Edwards CL, Platsoucas CD, Freedman RS. Expansion of T cells in vitro in low concentrations of recombinant interleukin-2 correlates with major histocompatibility complex Class I and II antigen expression in human ovarian carcinoma cells and lymphocyte infiltration in vivo. Proc Am Soc Clin Oncol 1994;A952.

    Google Scholar 

  84. Muul LM, Nason-Burchenal K, Carter CS, Cullis H, Slavin D, Hyatt C, Director EP, Leitman SF, Klein HG, Rosenberg SA. Development of an automated closed system for generation of human lymphokine-activated killer (LAK) cells for use in adoptive immunotherapy. J Immunol Methods 1987;101:171–181.

    Article  PubMed  CAS  Google Scholar 

  85. Knazek RA, Wu Y-W, Aebersold PM, Rosenberg SA. Culture of human tumor infiltrating lymphocytes in hollow fiber bioreactors. J Immunol Methods 1990;127:29–37.

    Article  PubMed  CAS  Google Scholar 

  86. Freedman RS, Edwards CL, Kavanagh JJ, Kudelka A, Katz RL, Carrasco CH, Atkinson EN, Scott W, Tomasovic B, Tamplin S, Platsoucas CD. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor infiltrating lymphocytes and low dose rIL-2. A pilot trial. J Immunother, in press.

    Google Scholar 

  87. Kirk IR, Carrasco CH, Lawrence DD, Chuang VP, Richli WR, Charnsangavej C, Kavanagh JJ, Kudelka AP, Freedman RS, Markowitz AB. Intraperitoneal catheters: Percutaneous placement with fluoroscopic guidance. J Vasc Interven Radiol 1993;4: 299–304.

    Article  CAS  Google Scholar 

  88. Chapman PB, Kolitz JE, Hakes TB, Gabrilove JL, Weite K, Merluzzi VJ, Engerg A, Bradley EC, Konrad M, Mertelsmann R. A phase I trial of intraperitoneal recombinant interleukin-2 in patients with ovarian carcinoma. Invest New Drugs 1988;6:179–188.

    Article  PubMed  CAS  Google Scholar 

  89. Bertoglio S, Melioli G, Baldini E, Catturich A, Sertoli MR, Civalleri D, Percivale P, Meier W, Galazka A, Badellino F. Intraperitoneal infusion of recombinant interleukin-2 in malignant ascites in patients with gasrointestinal and ovarian cancer. Acta Med Austria 1989;6:81–83.

    Google Scholar 

  90. Lurie H, Rakovsky E, Fenig E, Davidovitz J, Adler A. A pilot study of intraperitoneal recombinant interleukin-2 and ex vivo activated intracavitary lymphocytes in patients with malignant peritoneal spread I. Clinical aspects. Mol Biother 1989;1:163–169.

    PubMed  CAS  Google Scholar 

  91. Morecki S, Topalian SL, Meyer WW, Okrongly D, Okarma TB, Rosenberg SA. Separation and growth of human CD4+ and CD8+ tumor-infiltrating lymphocytes and peripheral blood mononuclear cells by direct positive panning on covalently attached monoclonal antibody-coated flasks. J Biol Resp Mod 1990;9:463–474.

    CAS  Google Scholar 

  92. Fisher B, Packard B, Read E, Carrasquillo JA, Carter CS, Topalian SL, Yang JC, Yolles P, Larson SM, Rosenberg SA. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989;7:250–261.

    PubMed  CAS  Google Scholar 

  93. Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang JC, Fisher B, Aebersold P, Packard BS, Yu MY, Rosenberg SA. In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 1989;81:1709–1717.

    Article  PubMed  CAS  Google Scholar 

  94. Anderson WF. Human gene therapy. Science 1992;256:808–813.

    Article  PubMed  CAS  Google Scholar 

  95. Miller AD. Human gene therapy comes of age. Nature 1992;357:455–460.

    Article  PubMed  CAS  Google Scholar 

  96. Culver KW, Morgan RA, Osborne WR, Lee RT, Lenschow D, Able C, Cornetta K, Anderson WF, Blaese RM. In vivo expression and survival of gene-modified T lymphocytes in rhesus monkeys. Hum Gene Ther 1990;1:399–410.

    Article  PubMed  CAS  Google Scholar 

  97. Culver K, Cornetta K, Morgan R, Morecki S, Aebersold P, Kasid A, Lotze M, Rosenberg SA, Anderson WF, Blaese RM. Lymphocytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci USA 1991;88:3155–3159.

    Article  PubMed  CAS  Google Scholar 

  98. Kasid A, Morecki S, Aebersold P, Cornetta K, Culver K, Freedman S, Director E, Lotze MT, Blaese RM, Anderson WF. Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc Natl Acad Sci USA 1990;87:473–477.

    Article  PubMed  CAS  Google Scholar 

  99. Morecki S, Karson E, Cornetta K, Kasid A, Aebersold P, Blaese RM, Anderson WF, Rosenberg SA. Retrovirus-mediated gene transfer into CD4+ and CD8+ human T cell subsets derived from tumor-infiltrating lymphocytes and peripheral blood mononuclear cells. Cancer Immunol Immunother 1991;32:342–352.

    Article  PubMed  CAS  Google Scholar 

  100. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL. Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990;323:570–578.

    Article  PubMed  CAS  Google Scholar 

  101. Alexander RB, Rosenberg SA. Adoptively transferred tumor-infiltrating lymphocytes can cure established metastatic tumor in mice and persist long-term in vivo as functional memory T lymphocytes. J Immunother 1991;10:389–397.

    Article  PubMed  CAS  Google Scholar 

  102. Nash MA, Platsoucas CD, Wong BY, Wong PMC, Cottier-Fox M, Otto E, Freedman RS. “Transduction of CD4+ and CD8+ rIL-2 expanded ovarian TIL-derived T-cell lines following infection with GINa (neoR) replication-deficient retroviral vector” Human Gene Therapy 1995;6:1379–1389.

    Article  PubMed  CAS  Google Scholar 

  103. Boyer CM, Dawson DV, Neal SE, Winchell LF, Leslie DS, Ring D, Bast RC Jr. Differential induction by interferons of major histocompatibility complex-encoded and non-major histocompatibility complex-encoded antigens in human breast and ovarian carcinoma cell lines. Cancer Res 1989;49:2928–2934.

    PubMed  CAS  Google Scholar 

  104. Guha A, Dainiak N, Freedman M, Goldschneider I, Cone RE. Regulatory effect of interferon-γ and phorbol esters on the surface expression of biosynthesis of MHC class I antigens by human leukemia cells. Cell Immunol 1993;151:404–413.

    Article  PubMed  CAS  Google Scholar 

  105. Wang P, Vánky F, Klein E. MHC class-I-restricted auto-tumor-specific CD4+CD8- T-cell clones established from autologous mixed lymphocyte-tumor-cell-culture (MLTC). Int J Cancer 1992;51:962–967.

    Article  PubMed  CAS  Google Scholar 

  106. D’Acquisto R, Markman M, Hakes T, Rubin S, Hoskins W, Lewis JL Jr. Aphase I trial of intraperitoneal recombinant gamma-interferon in advanced ovarian carcinoma. J Clin Oncol 1988;6:689–685.

    PubMed  Google Scholar 

  107. Welander CE. Interferon in the treatment of ovarian cancer. Semin Oncol 1988;15:26–29.

    PubMed  CAS  Google Scholar 

  108. Allavena P, Peccatori F, Maggioni D, Erroi A, Sironi M, Colombo N, Lissoni A, Galazka A, Meiers W, Mangioni C, Montovani A. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: Modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res 1990;50:7318–7323.

    PubMed  CAS  Google Scholar 

  109. Colombo N, Peccatori F, Paganin C, Bini S, Brandely M, Mangioni C, Mantovani A, Allavena P. Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy. Int J Cancer 1992;51:42–46.

    Article  PubMed  CAS  Google Scholar 

  110. Platsoucas CD. Regulation of natural killer cytotoxicity by E. coli-derived human interferon gamma. Scand J Immunol 1986;24:93–108.

    Article  PubMed  CAS  Google Scholar 

  111. Greiner JW, Guadagni F, Goldstein D, Smalley RV, Borden EC, Simpson JF, Molinolo A, Schlom J. Intraperitoneal administration of interferon-gamma to carcinoma patients enhances expression of tumor associated glycoprotein-72 and carcinoembroynic antigen on malignant ascites cells. J Clin Oncol 1992;10:735–746.

    PubMed  CAS  Google Scholar 

  112. Siegel JP. Effects of interferon-gamma on the activation of human T lymphocytes. Cell Immunol 1988;111:461–472.

    Article  PubMed  CAS  Google Scholar 

  113. Vánky F, Stuber G, Rotstein S, Klein E. Auto-tumor recognition following in vitro induction of MHC antigen expression on solid human tumors: Stimulation of lymphocytes and generation of cytotoxicity against the original MHC-antigen-negative tumor cells. Cancer Immunol Immunother 1989;28:17–21.

    Article  PubMed  Google Scholar 

  114. Brunda MJ, Tarnowski D, Davatelis V. Interaction of recombinant of recombinant interferons with recombinant interleukin-2: Differential effects on natural killer cell activity and interleukin-2-activated killer cells. Int J Cancer 1986;37:787–793.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Freedman, R.S., Platsoucas, C.D. (1996). Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes. In: Sugarbaker, P.H. (eds) Peritoneal Carcinomatosis: Principles of Management. Cancer Treatment and Research, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1247-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1247-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8531-1

  • Online ISBN: 978-1-4613-1247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics