Skip to main content

Intraperitoneal immunotherapy of cancer: A review of options for treatment

  • Chapter
Peritoneal Carcinomatosis: Principles of Management

Part of the book series: Cancer Treatment and Research ((CTAR,volume 82))

Abstract

The peritoneal cavity is a common site of tumor recurrence after initial “radical” surgical treatment of various gastrointestinal malignancies and ovarian cancers. Often widespread dissmemination in this body cavity occurs. This condition is called peritoneal carcinomatosis and is remarkably resistant to various treatment modalities. Because of the unusual natural course of ovarian cancer and low-grade gastrointestinal neoplasms, characterized by their tendency to stay confined to the peritoneal cavity for a long time, control of metastatic disease in the peritoneal cavity is an important and challenging problem. Tumor implants on peritoneal surfaces occur in more than 50% of patients with recurrent carcinoma and may remain localized for extended periods of time [1,2]. In a small number of these patients, the peritoneal cavity remains the only site of tumor recurrence; this is more often the case in patients with ovarian cancer. Peritoneal carcinomatosis is a condition for which no effective treatment exists at present. The 5 year survival is only 20% [3]. The development of an effective therapeutic approach would have a major impact on survival rates in patients with ovarian cancer. In spite of recent advances in intraperitoneal chemotherapy, new modalities and innovative ideas are clearly needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugarbaker PH, MacDonald JS, Gunderson J. Cancer Principles and Practice of Oncology, 2nd ed. Philadelphia: JB Lippincott, 1985, pp 643–724.

    Google Scholar 

  2. Gunderson LL, Sosin H, Levitt LE. Extrahepatic colon cancer, areas of failure in a reoperation series: Implications for adjuvant therapy. Int J Radiat Oncol Biol Phys 1985;11:731–741.

    Article  PubMed  CAS  Google Scholar 

  3. Berek JS, Hacker NF. Ovarian cancer. In Haskell CM, ed. Cancer Treatment. Philadelphia: WB Saunders, 1990, pp 295–325.

    Google Scholar 

  4. Dedrick RL, Myers CE, Bugay PM, Devita VT Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep 1978; 62:1–9.

    PubMed  CAS  Google Scholar 

  5. Dunnick NR, Jones RB, Doppmen JL, Speyer J, Meyers CE. Intraperitoneal contrast infusion for assessment of intraperitoneal fluid dynamics. AJR 1979;133:221–223.

    PubMed  CAS  Google Scholar 

  6. Howell SB, Pfeifle CE, Wung WE, Olshen RA, Lucas WE, Yon JL, et al. Intraperitoneal cisplatin with systemic thiosulfate protection. Ann Intern Med 1982;97:845–851.

    PubMed  CAS  Google Scholar 

  7. Kraft AR, Tompkins RK, Jesseph JE. Peritoneal electrolyte absoption: Analysis of portal, systemic venous and lymphatic transport. Surgery 1968;64:147–155.

    Google Scholar 

  8. Lucas G, Brinkle S, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971;178:562–566.

    Google Scholar 

  9. Markman M. Intracavitary chemotherapy. Crit Rev Oncol Hematol 1985;3:205–233.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenshein N, Blake D, McIntyre PA, Parmley T, Natarajan TK, Dvornicky J, et al. The effect of volume on the distribution of substances instilled into the peritoneal cavity. Gynecol Oncol 1978;6:106–110.

    Article  PubMed  CAS  Google Scholar 

  11. Muggia FM, LePoidevin E, Jeffers S, Russell C, Boswell W, Morrow CP, et al. Intraperitoneal therapy for ovarian cancer: Analysis of fluid distribution by computerized tomography. Ann Oncol 1992;3:149–154.

    PubMed  CAS  Google Scholar 

  12. McVie JG, Dikhoff TGMH, Van der Heide J. Tissue concentration of platinum after intraperitoneal cisplatin administration in patients. Proc Am Assoc Cancer Res 1989;26:162.

    Google Scholar 

  13. Los G, Mutsaers PHA, Van der Vijgh WJ, Baldew GS, De Graaf PW, McVie JG. Direct diffusion of cis-diamminedichloro-platinum (II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: A comparison with systemic chemotherapy. Cancer Res 1989; 49:3380–3384.

    PubMed  CAS  Google Scholar 

  14. Los G, Mutsaers PHA, Lenglet WMJ, Baldew GS, McVie JG. Platinum distribution in intraperitoneal tumors after intraperitoneal cisplatin treatment. Cancer Chemother Pharmacol 1990;25:389–394.

    Article  PubMed  CAS  Google Scholar 

  15. Los G, Mutsaers PHA, Dubbelman R, Van der Hoeven CJ, McVie JG. Platinum distribution in rat and human peritoneal autopsy tumor samples after treatment with cDDP and CBDCA. Proc 6th NCI/EORTC Symposium on New Drugs in Cancer Therapy, 1989, abstract 220.

    Google Scholar 

  16. Los G, McVie JG. Experimental and clinical status of intraperitoneal chemotherapy. Eur J Cancer 1990;26:755–762.

    Article  PubMed  CAS  Google Scholar 

  17. Berek JS, Hackar NF, Lichtenstein A, Jung T, Spina C, Knox RM, et al. Intraperitoneal recombinant α-interferon for “salvage” immunotherapy in stage III epithelian ovarian cancer: A Gynecologic Oncology Group study. Cancer Res 1985;45:4447–4453.

    PubMed  CAS  Google Scholar 

  18. Eggermont AMM, Sugarbaker PH. Intraperitoneal chemotherapy and immunotherapy. Onkologie 1991:143:123–136.

    Article  Google Scholar 

  19. Sugarbaker PH, Klecker RW, Gianola FJ, Speyer JL. Prolonged treatment schedules with intraperitoneal 5-fluorouracil diminish the local-regional nature of drug distribution. Am J Clin Oncol 1986;9:1–7.

    Article  PubMed  CAS  Google Scholar 

  20. Gianola FJ, Sugarbaker PH, Barofsky I, White DE, Myers CE. Toxicity studies of adjuvant intravenous versus intraperitoneal 5-FU in patients with advanced primary colon or rectal cancer. Am J Clin Oncol 1986;9:403–410.

    Article  PubMed  CAS  Google Scholar 

  21. Hernandez E, Rosenshein NB, Bhagavan BS, Parmley TH. Tumor heterogeneity and histopathology in epithelial ovarian cancer. Obstet Gynecol 1984;63:330–334.

    PubMed  CAS  Google Scholar 

  22. Berchuck A, Rodriguez GC, Kamel A, Dodge RK, Soper JT, Clarke-Pearson DL, et al. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 1991;164:669–674.

    PubMed  CAS  Google Scholar 

  23. Slamon DJ, Dodophin W, Jones LA, et al. Studies of HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707–712.

    Article  PubMed  CAS  Google Scholar 

  24. Berchuck A, Kamel A, Whitaker R, et al. Cancer Res 1990;50:4087–4091.

    PubMed  CAS  Google Scholar 

  25. Yonish-Rouach E, Resnetzky D, Lotem J, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991;352:345–347.

    Article  PubMed  CAS  Google Scholar 

  26. Berek JS, Bast RC, Lichtenstein A, et al. Lymphocyte cytotoxicity in the peritoneal cavity and blood of patients with ovarian cancer, obstet Gynecol 1984;64:708–718.

    CAS  Google Scholar 

  27. Lichtenstein A, Spina C, Berek JS, et al. Intraperitoneal administration of human recombinant interferon-α in patients with ovarian cancer: Effects on lymphocyte phenotype and cytotoxicity. Cancer Res 1988;48:5853–5859.

    PubMed  CAS  Google Scholar 

  28. Allavena P, Peccatori F, Maggioni D, Erroi A, Sironi M, Colombo N, et al. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: Modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res 1990;50:7318–7323.

    PubMed  CAS  Google Scholar 

  29. van Ravenswaay Claasen HH, Hilkens CMU, Fleuren GJ. The effect of interferon-gamma on antigen expression of four different ovarian tumor cell lines and bispecific monoclonal antibody mediated cytotoxicity. Submitted, 1994.

    Google Scholar 

  30. Bakker W, Nijhuis-Heddes JMA, Wever AMJ, Brutel de la Riviere A, Van de Velde EA, Dijkman JH. Postoperative intrapleural BCG in lung cancer: Lack of efficacy and possible enhancement of tumour growth. Thorax 1981;36:870–874.

    Article  PubMed  CAS  Google Scholar 

  31. Falk RE, MacGregor AB, Landi S, Ambus U, Langer B. Immunostimulation with intraperitoneally administered bacille Calmette-Guerin for advanced malignant tumors of the gastrointestinal tract. Surg Gynecol Obstet 1976;142:363–368.

    PubMed  CAS  Google Scholar 

  32. Berek JS, Knapp RC, Hacker NF, Lichtenstein A, Jung T, spina C, et al. Intraperitoneal immunotherapy of epithelial ovarian carcinoma with Corinebacterium parvum. Am J Obstet Gynecol 1985;152:1003–1010.

    PubMed  CAS  Google Scholar 

  33. Webb HE, Oaten SW, Pike CP. Treatment of malignant ascitic and pleural effusions with C. parvum. Br Med J 1978;1:338–340.

    Article  PubMed  CAS  Google Scholar 

  34. Uchida M, Mischke M, Hoshino T. Intrapleural administration of OK-432 in cancer patients: Augmentation of autologous tumor killing activity of tumor-associated large granular lymphocytes. Cancer Immunol Immunother 1984;18:5–12.

    Article  PubMed  CAS  Google Scholar 

  35. Kawagoe K, Masuda H. Advanced ovarian cancer treated by intraperitoneal immunotherapy with OK-432. Jpn J Clin Oncol 1986;166:137–142.

    Google Scholar 

  36. Sakatani M, Ogura T, Masuno T, Kishimoto S, Yamamura Y. Effect of Nocardia rubra cell wall skeleton on augmentation of cytotoxicity function in human pleural macrophages. Cancer Immunol Immunother 1987;25:119–125.

    Article  PubMed  CAS  Google Scholar 

  37. Jarowenko DG, Sigler SC, Pellis NR. Muramyl tripeptide: An effective immunotherapy in the surgical setting for pediatric abdominal neoplasms. J Pediatr Surg 1987;22:497–500.

    Article  PubMed  CAS  Google Scholar 

  38. Berek JS, Cantrell JL, Lichtenstein AK, Hacker NF, Knox RM, Nieberg RK, et al. Immunotherapy with biochemically dissociated fractions of Propionibacterium acnes in a murine ovarian cancer model. Cancer Res 1984;44:1871–1875.

    PubMed  CAS  Google Scholar 

  39. Hashimoto S, Nomoto K, Nagaoka M, Yokokura T. In vitro and in vivo release of cytostatic factors from Lactobacillis casei elicited peritoneal macrophages after stimulation with tumor cells and immunostimulants. Cancer Immunol Immunother 1987;24:1–7.

    Article  PubMed  CAS  Google Scholar 

  40. Eggermont AMM, Sugarbaker PH, Marquet RL, Jeekel J. In vivo generation of lymphokine activated killer activity by ABPP and interleukin-2 and their antitumor effects against immunogenic and nonimmunogenic tumors in murine tumor models. Cancer Immunol Immunother 1988;26:24–30.

    Article  Google Scholar 

  41. Eggermont AMM, Sugarbaker PH. Marquet RL, Jeekel J. Synergistic antitumor activity of cyclophosphamide and ABPP in the treatment of established and advanced tumors in murine tumor models. Cancer Immunol Immunother 1987;25:16–24.

    Article  PubMed  CAS  Google Scholar 

  42. Eggermont AMM, Sugarbaker PH. Immunogenecity of the tumor determines the outcome of immunotherapy with interleukin-2, ABPP, and cyclophosphamide of micro and macrometastatic intraperitoneal tumor. Cancer Detect Prevent 1990;14:483–490.

    PubMed  CAS  Google Scholar 

  43. Salup RR, Herberman RB, Chirigos MA, Back T, Wiltrout RH. Therapy of peritoneal murine cancer with biological response modifiers. J Immunopharmacol 1985;7:417–436.

    Article  PubMed  CAS  Google Scholar 

  44. Inamura N, Nakahara K, kino T, Gotoh T, Kawamura I, Aoki H, et al. Activation of tumoricidal properties in macrophages and inhibition of experimentally-induced murine metastases by a new synthetic acyltripeptide, PK-565. J Biol Resp Modif 1985;4:408–417.

    CAS  Google Scholar 

  45. Berek JS, Lichtenstein AK, Knox RM, Jung TS, Rose TP, Cantrell JL, et al. Synergistic effects of combination immunotherapies in a murine ovarian cancer model. Cancer Res 1985;45:4215–4218.

    PubMed  CAS  Google Scholar 

  46. Willemse PHB, De Vries EGE, Mulder NH, Aaldders JG, Bouma J, Sleijfer DT. Intraperitoneal human recombinant interferon alpha-2b in minimal residual ovarina cancer. Eur J Cancer 1990;26:353–358.

    Article  PubMed  CAS  Google Scholar 

  47. Bezwoda WR, Golombick T, Dansey R, Keeping J. Treatment of malignant ascites due to recurrent/refractory ovarian cancer: The use of interferon-α or interferon-α plus chemotherapy in vivo and in vitro. Eur J Cancer 1991;27:1423–1429.

    Article  PubMed  CAS  Google Scholar 

  48. Nardi M, Cognetti F, Pollera CF, Giulia MD, Lombardi A, Atlante G, et al. Intraperitoneal recombinant alpha-2-interferon alternating with cisplatin as salvage therapy for minimal residual-disease ovarian cancer: A phase II study. J Clin Oncol 1990;8:1036–1041.

    PubMed  CAS  Google Scholar 

  49. Berek JS, Welander C, Schink JC, Grossberg H, Montz FJ, Zigelboim J. A phase I-II trial of intraperitoneal cisplating and α-interferon in patients wiht persistent epithelial ovarian cancer. Gynecol Oncol 1991;40:237–243.

    Article  PubMed  CAS  Google Scholar 

  50. Markman M, Berek JS, Blessing JA, McGuire WP, Bell J, Homesley HD. Characteristics of patients with small-volume residula ovarian cancer unresponsive to cisplatin-based ip chemotherapy: Lessons learned from a Gynecologic Oncology Group phase II trial of ip cisplatin and recombinant alpha-interferon see comments. Gynecol Oncol 1992;45:3–8.

    Article  PubMed  CAS  Google Scholar 

  51. Frasci G, Tortoriello A, Facchini G, Conforti S, Cardone A, Persico G, et al. Intraperitoneal (ip) cisplatin-mitoxantrone-interferon-α2b in ovarian cancer patients with minimal residual disease. Gynecol Oncol 1993;50:60–67.

    Article  PubMed  CAS  Google Scholar 

  52. Rambaldi A, Introna M, Colotta F, Landolfo S, Colombo N, Mangioni C, et al. Intraperitoneal administration of interferon ß in ovarian cancer patients. Cancer 1985;56:294–301.

    Article  PubMed  CAS  Google Scholar 

  53. D’Acquisto R, Markman M, Hakes T, Rubin S, Hoskins W, Lewis JL. A phase I trial of intraperitoneal recombinant interferon-γ in advanced ovarian carcinoma. J Clin Oncol 1988;6:689–695.

    PubMed  Google Scholar 

  54. Welander CE. Homesley HD, Reich SD, Levin EA. A phase II study of the efficacy of recombinant interferon gamma in relapsing ovarian adenocarcinoma. Am J Clin Oncol 1988;11:465–469.

    Article  PubMed  CAS  Google Scholar 

  55. Pujade-Lauraine E, Colombo N, Namer N, Fumoleau P, Monnier A, Nooy MA, et al. Intraperitoneal human r-IFN gamma in patients with residual ovarian carcinoma (OC) at second look laparotomy. Proc Am Soc Clin Oncol 1990;9:156.

    Google Scholar 

  56. Koelbl H, Micksche M, Gitsch G, Hanzal E, Nowotny C. Treatment with biologic response modifiers in patients with ovarian cancer. Eur J Obstet Gynecol Reprod Biol 1991;41:64–69.

    Article  PubMed  CAS  Google Scholar 

  57. Colombo N, Peccatori F, Paganin C, Bini S, Brandely M, Mangioni C, et al. Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy. Int J Cancer 1992;51:42–46.

    Article  PubMed  CAS  Google Scholar 

  58. Reichman B, Markman M, Ianotti N, Hakes T, Hoskins W, Rubin S, et al. Phase I trial of intraperitoneal recombinant tumor necrosis factor. Proc Am Soc Clin Oncol 1989;8:64.

    Google Scholar 

  59. Hardy J, Jones A, Gore ME, Viner C, Selby P, Wiltshaw E. Treatment of advanced ovarian cancer with intraperitoneal tumour necrosis factor. Eur J Cancer 1990;26:771–772.

    Article  PubMed  CAS  Google Scholar 

  60. Karck U, Meerpohl HG, Pfleiderer A, Breckwoldt M. TNF therapy of ascites and pleural effusions due to gynaecological carcinomas. J Cancer Res Clin Oncol 1990;116:328.

    Google Scholar 

  61. Räth U, Kaufmann M, Schmid H, Hofmann J, Wiedemann B, Kist A, et al. Effect of intraperitoneal recombinant human tumour necrosis factor alpha on malignant ascites. Eur J Cancer 1991;27:121–125.

    Article  PubMed  Google Scholar 

  62. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine activated killer cell phenomenon: Lysis of NK resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 1982;155:1823–1841.

    Article  PubMed  CAS  Google Scholar 

  63. Grimm EA, Robb RJ, Roth JA, Neckers LM, Lachman LB, Wilson DJ, et al. Lymphokine activated killer (LAK) cell phenomenon. III. Evidence that IL-2 alone is sufficient for direct activation of PBL into LAK. J Exp Med 1983;158:1356–1369.

    Article  PubMed  CAS  Google Scholar 

  64. Borst J, van de Griend RJ, Oostveen JW, Ang S-L, Melief CJH, Seidman JG, et al. A T-cell receptor τ/CD3 complex found on cloned functional lymphocytes. Nature 1987;325:683–688.

    Article  PubMed  CAS  Google Scholar 

  65. Hersey P, Bolhuis RLH. “Nonspecific” MHC-unrestricted killer cells and their receptors. Immunol Today 1987;8:233–239.

    Article  Google Scholar 

  66. Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol 1986;4:681–709.

    Article  PubMed  CAS  Google Scholar 

  67. Ettinghausen SE, Lipford EH, Mule JJ, Rosenberg SA. Recombinant interleukin-2 stimulates in vivo lymphoid cell populations in tissues. J Immunol 1985;135:1488–1493.

    PubMed  CAS  Google Scholar 

  68. Ettinghausen SE, Lipford EH, Mule JJ, Rosenberg SA. Recombinant interleukin-2 stimulates in vivo proliferation of adoptively transferred lymphokine activated killer (LAK) cells. J Immunol 1985;135:3623–3628.

    PubMed  CAS  Google Scholar 

  69. Matory YL, Change AE, Lipford EH, Braziel R, Hyatt CL, Rosenberg SA. The toxicity of recombinant human interleukin-2 in rats following intravenous infusion. J Biol Resp Modif 1985;4:377–387.

    CAS  Google Scholar 

  70. Ottow RT, Eggermont AMM, Steller EP, Matthews W, Sugarbaker PH. Requirements for successful immunotherapy of intraperitoneal cancer using interleukin-2 and lymphokine activated killer cells. Cancer 1987;60:1465–1473.

    Article  PubMed  CAS  Google Scholar 

  71. Ottow RT, Steller EP, Sugarbaker PH, Wesley RA, Rosenberg SA. Immunotherapy of intraperitoneal cancer with interleukin-2 and lymphokine activated killer cells: Reduction of tumor and survival benefits in the murine models. Cell Immunol 1987;29:58–71.

    Google Scholar 

  72. Eggermont AMM, Ottow RT, Steller EP, Sugarbaker PH. Local-regional adoptive immunotherapy in experimental peritoneal carcinomatosis using lymphokine activated killer cells and interleukin-2. Contrib Oncol 1988;29:58–71.

    Google Scholar 

  73. Eggermont AMM, Sugarbaker PH. Efficacy of chemoimmuno-therapy with cyclophosphamide, interleukin-2 and luymphokine-activiated killer cells in an intraperitoneal murine tumor model. Br J Cancer 1988;58:410–411.

    Article  PubMed  CAS  Google Scholar 

  74. Steller EP, Eggermont AMM, Matthews W, Sugarbaker PH. Recruitment of inflammatory cells to a deposit potentiates the immunotherapeutic effects of interleukin-2. Cancer Immunol Immunother 1986;23:165–168.

    Article  PubMed  CAS  Google Scholar 

  75. Eggermont AMM, Steller EP, Ottow RT, Matthews W, Sugarbaker PH. Augmentation of interleukin-2 immunotherapeutic effects by lymphokine activated killer cells and allogeneic stimulation in murine tumor models. J Natl Cancer Inst 1987;75:983–990.

    Google Scholar 

  76. Eggermont AMM, Eisenthal A, Sugarbaker PH. Locoregional induction of lymphokine activated killer (LAK) cell activity as well as antibody dependent cellular cytotoxicity (ADCC) by intraperitoneal (IP) adminsitration of ABPP or IL-2 is superiro to its systemic effects. FASEB J 1988;2:A691.

    Google Scholar 

  77. Eggermont AMM, Steller EP, Matthews W, Sugarbaker PH. Alloimmune cells consume interleukin-2 and competitively inhibit antitumor effects of lymphokine activated killer cell and interleukin-2 immunotherapy. Br J Cancer 1987;56:97–102.

    Article  PubMed  CAS  Google Scholar 

  78. Sugarbaker PH, Matthews W, Steller EP, Eggermont AMM. Inhibitory effects of alloimmune T cells on the generation of cytolytic responses of lymphokine activated killer cells. J Biol Resp Modif 1987;6:430–445.

    CAS  Google Scholar 

  79. Eggermont AMM, Steller EP, Sugarbaker PH. Laparotomy enhances intraperitoneal tumor growth and abrogates the antitumor effects of interleukin-2 and lymphokine-activated killer cells. Surgery 1987;102:71–78.

    PubMed  CAS  Google Scholar 

  80. Eggermont AMM, Sugarbaker PH. Lymphokine activated killer cell and interleukin-2 inhibitors: Their role in adoptive immunotherapy. Cell Immunol 1983;107:384–394.

    Article  Google Scholar 

  81. Salup RR, Back TC, Wiltrout RH. Successful treatment of advanced murine renal cell cancer by bicompartmental adoptive chemoimmunotherapy. J Immunol 1987;641:647.

    Google Scholar 

  82. Lebersky B, Baldisseri M, Kunscher A, Seski J, Zook D, Hammond R, et al. Phase I—II study of intraperitoneal low dose interleukin-2 in refractory stage II ovarian cancer. Proc Am Soc Clin Oncol 1989;8:163.

    Google Scholar 

  83. Urba WJ, Clark JW, Steis RG, Bookman MA, Smith II JW, Beckner SK, et al. Intraperitoneal lymphokine-activated killer cell/interleukin-2 therapy in patients with intraabdominal cancer: Immunologic considerations. J Natl Cancer Inst 1989;81:602–611.

    Article  PubMed  CAS  Google Scholar 

  84. Steis RG, Urba WJ, Bookman MA, Smith II JW, Clark JW, Miller RL, et al. Intraperitoneal lymphokine-activated killer-cell and interleukin-2 therapy for malignancies limited to the peritoneal cavity. J Clin Oncol 1990;8:1618–1629.

    PubMed  CAS  Google Scholar 

  85. Lotze MT, Custer MC, Rosenberg SA. Intraperitoneal administration of interleukin-2 in patients with cancer. Arch Surg 1986;121:1373–1379.

    PubMed  CAS  Google Scholar 

  86. Lichtenstein A, Berek JS, Zighelboim J. Natural killer inhibitory substance produced by the peritoneal cells of patients with ovarian cancer. J Natl Cancer Inst 1985;74:349–355.

    PubMed  CAS  Google Scholar 

  87. Lucci JA, Manetta A, Cappuccini F, Ininns EK, Dett CA, DiSaia P, et al. Immunotherapy of ovarian cancer. II. In vitro generation and characterization of lymphokine-activated killer T cells from the peripheral blood of recurrent ovarian cancer patients. Gynecol Oncol 1992;45:129–135.

    Article  PubMed  Google Scholar 

  88. Sheid B, Boyce J. Inhibition of lymphocyte mitogenesis by factor(s) released from macrophages isolated from ascitic fluid of advanced ovarian patients. Cancer Immunol Immunother 1984;17:190–194.

    Article  PubMed  CAS  Google Scholar 

  89. Cornelius JG, Normann SJ. Isolation of a low molecular weight inhibitor of lymphocyte proliferation from tumorous ascites. J Immunol 1988;141:2175–2180,

    PubMed  CAS  Google Scholar 

  90. Lotzova E, Savary CA, Freedman RS, Edwards CL, Wharton JT. Recombinant IL-2-activated Nk cells mediate LAK activity against ovarian cancer. Int J Cancer 1988;42: 225–231.

    Article  PubMed  CAS  Google Scholar 

  91. Hirte HW, Clark DA, O’Connoll G, Rusthoven J, Mazurka J. Reversal of suppression of lymphokine-activated killer cells by transforming growth factor-ß in ovarian carcinoma ascitic fluid requires interleukin-2 combined with anti-CD3 antibody. Cell Immunol 1992; 142:207–216.

    Article  PubMed  CAS  Google Scholar 

  92. Heo DS, Whiteside TL, Kanbour A, Herberman RB. Lymphocytes infiltrating humna ovarian tumors. I. Role of Leu-19 (NKH1)-positive recombinant IL-2-activated cultures of lymphocytes infiltrating human ovarian tumors. J Immunol 1988;140:4042–4049.

    PubMed  CAS  Google Scholar 

  93. Moore AL, Grant BW, Dorighi JA, Belinson JL, Stewart JA, Albertini R. Effect of coomerical peritoneal dialysis fluids on the lytic function of lymphokine-activated killer cells. J Biol Resp Modif 1988;7:401–408.

    CAS  Google Scholar 

  94. Stevenson HC, Keenan AM, Woodhouse C, Ottow RT, Miller P, Steller EP, et al. Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis. Cancer Res 1987;47: 6100–6103.

    PubMed  CAS  Google Scholar 

  95. Edington HD, Stevenson HC, Sugarbaker PH. Local-regional approach to peritoneal carcinomatosis combining cytoreductive surgery with adoptive immunotherapy utilizing gamma interferon activated autologous monocytes. Contrib Oncol 1988;29:125–142.

    Google Scholar 

  96. Aoki Y, Takakuwa K, Kodama T, Tanaka K, Takahashi M, Tokunaga A. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res 1991;51:1934–1939.

    PubMed  CAS  Google Scholar 

  97. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989;7:250–261.

    PubMed  CAS  Google Scholar 

  98. Ferrini S, Biassoni R, Moretta A, Bruzzone M, Nicolin A, Moretta L. Clonal analysis of T lymphocytes isolated from ovarian carcinoma ascitic fluid. Phenotypic and functional characterization of T-cell clones capable of lysing autologous carcinoma cells. Int J Cancer 1985;36:337–343.

    PubMed  CAS  Google Scholar 

  99. Joannides CG, Reshed S, Fisk B, Fan D, Itoh K, Freedman RS. Lymphocytes infiltrating ovarian malignant ascites: Modulation of IL-2 induced proliferation by IL-4 and of selective increase in CD8+ T cells by TNF-α. Lymphokine Cytokine Res 1991;10:307–315.

    Google Scholar 

  100. Apiranthitou-Drogari M, Paganin C, Bernasconi S, Losa G, Maneo A, Colombo N, et al. In search of specific cytotoxic T lymphocytes infiltrating or accompanying human ovarian carcinoma. Cancer Immunol Immunother 1992;35:289–295.

    Article  PubMed  CAS  Google Scholar 

  101. Wang P, Vanky F, Klein E. MHC class-I-restricted auto-tumor-specific CD4+CD8- T-cell clones established from autologous mixed lymphocyte-tumor-cell culture (MLTC). Int J Cancer 1992;51:962–967.

    Article  PubMed  CAS  Google Scholar 

  102. Cozzoline F, Torcia N, Corossino AM, et al. Characterization of cells from invaded lymph nodes in patients with solid tumors: Lymphokine requirement for tumor-specific lymphoproliferative response. J Exp Med 1987;166:303–318.

    Article  Google Scholar 

  103. Li WY, Lusheng S, Kanbour A, Herberman RB, Whiteside TL. Lymphocytes infiltrating human ovarian tumors: Synergy between tumor necrosis factor α and interleukin 2 in the generation of CD8+ effectors from tumor-infiltrating lymphocytes. Cancer Res 1989;49:5979–5985.

    Google Scholar 

  104. Ioannides CG, Fisk B, Tomasovic B, Pandita R, Aggarwal BB, Freedman RS. Induction of interleukin-2 receptor by tumor necrosis factor α on cultured ovarian tumor-associated lymphocytes. Cancer Immunol Immunother 1992;35:83–91.

    Article  PubMed  CAS  Google Scholar 

  105. Cappuccini F, Lucci JA, Dett CA, Gatanaga M, Ininns EK, Gatanaga T, et al. Trafficking of syngeneic murine lymphokine activated killer T cells following intraperitoneal administration in normal and tumor bearing mice. Gynecol Oncol 1992;46:163–169.

    Article  PubMed  CAS  Google Scholar 

  106. Bast RC, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981;68:1331–1337.

    Article  PubMed  Google Scholar 

  107. Rubin SC, Finstad CL, Hoskins WJ, Federici MG, Lloyd KO, Lewis JL, Jr. A longitudinal study of antigen expression in epithelial ovarian cancer. Gynecol Oncol 1989;34:389–394.

    Article  PubMed  CAS  Google Scholar 

  108. Bookman MA. Biologic therapy in the management of refractory ovarian cancer. Gynecol Oncol 1993;51:113–126.

    Article  PubMed  CAS  Google Scholar 

  109. Marks JR, Davidoff AM, Kerns BJ, Humphrey PA, Pence JC, Dodge RK, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res 1991;51:2979–2984.

    PubMed  CAS  Google Scholar 

  110. Freedman RS, Ioannides CG, Mathioudakis G, Platsoucas CD. Novel immunologic strategies in ovarian carcinoma. Am J Obstet Gynecol 1992;167:1470–1478.

    PubMed  CAS  Google Scholar 

  111. Winter G, Milstein C. Man-made antibodies. Nature 1991;349:293–299.

    Article  PubMed  CAS  Google Scholar 

  112. Morrison SL. Transfectomas provide novel chimeric antibodies. Science 1985;229:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  113. Sun LK, Curtis P, Rakowicz Szulczynska E, Ghrayeb J, Chang N, Morrison SL, et al. Chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17–1A. Proc Natl Acad Sci USA 1987;84:214–218.

    Article  PubMed  CAS  Google Scholar 

  114. Caron PC, Laird W, Co MS, Avdalovic NM, Queen C, Scheinberg DA. Engineered humanized dimeric forms of IgG are more effective antibodies. J Exp Med 1992;176: 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  115. Rubin SC, Finstad CL, Hoskins WJ, Povencher D, Federici MG, Lloyd KO, et al. Analysis of antigen expression at multiple tumor sites in epithelial ovarian cancer. Am J Obstet Gynecol 1991;164:558–563.

    PubMed  CAS  Google Scholar 

  116. Wahl RL, Barrett J, Geatti O, Liebert M, Wilson BS, Fisher S, et al. The intraperitoneal delivery of radiolabeled monoclonal antibodies: Studies on the regional delivery advantage. Cancer Immunol Immunother 1988;26:187–201.

    Article  PubMed  CAS  Google Scholar 

  117. Ward BG, Mather SJ, Hawkins LR, Crowther ME, Shepherd JH, Granowska M, et al. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: Assessment of intravenous and intraperitoneal routes of administration. Cancer Res 1987;47:4719–4723.

    PubMed  CAS  Google Scholar 

  118. Bast RC, Boyer CM, Jacobs I, Xu FJ, Wu S, Wiener J, et al. Cell growth regulation in epithelial ovarian cancer. Cancer 1993;71:1597–1601.

    Article  PubMed  Google Scholar 

  119. Rodriguez GC, Boente MP, Berchuck A, Whitaker RS, O’Briant KC, Xu F, et al. The effect of antibodies and immunotoxins reactive with HER-2/neu on growth of ovarian and breast cancer cell lines. Am J Obstet Gynecol 1993;168:228–232.

    PubMed  CAS  Google Scholar 

  120. Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediate antitumor effects in vivo. Oncogene 1988;2:387–394.

    PubMed  CAS  Google Scholar 

  121. Hirsch R, Eckhaus M, Auchincloss H, Sachs DH, Bluestone JA. Effects of in vivo administration of anti-T3 monoclonal antibody on T cell function in mice. I. Immunosuppression of transplantation responses. J Immunol 1988;140:3766–3772.

    PubMed  CAS  Google Scholar 

  122. Hirsch R, Archibald J, Gress RE. Differential T cell hyporesponsiveness induced by in vivo administration of intact of F(ab′)2 fragments of anti-CD3 monoclonal antibody. F(ab′)2 fragments induce a selective helper dysfunction. J Immunol 1991;147:2088–2093.

    PubMed  CAS  Google Scholar 

  123. Hirsch R, Gress RE, Pluznik DH, Eckhaus M, Bluestone JA. Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol 1989;142:737–742.

    PubMed  CAS  Google Scholar 

  124. Ferran C, Sheehan K, Dy M, Schreiber R, Merite S, Landais P, et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: Further evidence for transient in vivo T cell activation. Eur J Immunol 1990;20:509–515.

    Article  PubMed  CAS  Google Scholar 

  125. Alegre M, Vandenabeele P, Flamand V, Moser M, Leo O, Abramowicz D, et al. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: Role of tumor necrosis factor. Eur J Immunol 1990;20:707–710.

    Article  PubMed  CAS  Google Scholar 

  126. Ferran C, Dy M, Sheehan K, Schreiber R, Grau G, Bluestone J, et al. Cascade modulation by anti-tumor necrosis factor monoclonal antibody of interferon-gamma, interleukin 3 and interleukin 6 release after triggering of the CD3/T cell receptor activation pathway. Eur J Immunol 1991;21:2349–2353.

    Article  PubMed  CAS  Google Scholar 

  127. Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, et al. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-alfa. N Engl J Med 1989;320:1420–1421.

    Article  PubMed  CAS  Google Scholar 

  128. Shiloni E, Eisenthal A, Sachs D, Rosenberg SA. Antibody-dependent cellular cytotoxicity mediated by murine lymphocytes activated in recombinant interleukin 2. J Immunol 1987;138:1992–1998.

    PubMed  CAS  Google Scholar 

  129. Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP, et al. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991;51:4575–4580.

    PubMed  CAS  Google Scholar 

  130. Nassander UK, Steerenberg PA, Poppe H, Storm G, Poels LG, De Jong WH, et al. In vivo targeting of OV-TL 3 immunoliposomes to ascitic ovarian XX carcinoma cells (OVCAR-3) in athymic nude mice. Cancer Res 1992;52:646–653.

    PubMed  CAS  Google Scholar 

  131. Dijk J van. Renal Cell Carcinoma. Diagnostic and Therapeutic Applications of Monoclonal Antibodies. Thesis, University of Leiden, 1991.

    Google Scholar 

  132. Saleh MN, LoBuglio AF, Wheeler RH, Rogers KJ, Haynes A, Lee JY, et al. A phase II trial of murine monoclonal antibody 17–1A and interferon-gamma: Clinical and immunological data. Cancer Immunol Immunother 1990;32:185–190.

    Article  PubMed  CAS  Google Scholar 

  133. Macklis RM, Kinsey BM, Kassis AI, Ferrara JLM, Atcher RW, Hines JJ, et al. Radioim-munotherapy with alpha-particle-emitting immunoconjugates. Science 1988;240:1024–1026.

    Article  PubMed  CAS  Google Scholar 

  134. Hyama DM, Esteban JM, Lollo CP, Beatty BG, Beatty JD. Therapy of peritoneal carcinomatosis of human colon cancer xenografts with yttrium 90-labeled anti-carcinoembryonic antigen antibody ZCE025. Arch Surg 1987;122:1333–1337.

    Google Scholar 

  135. Rowlinson G, Snook D, Busza A, Epenetos AA. Antibody-guided localization of intraperitoneal tumors following intraperitoneal tumors following intraperitoneal or intravenous antibody administration. Cancer Res 1987;6528:6531.

    Google Scholar 

  136. Sharkley RM, Kaltovivh FA, Shih LB, Fand I, Govelitz G, Goldenberg DM. Radioimmunotherapy of human colonic cancer xenografts with 90Y-labeled monoclonal antibodies to carcinoembryonic antigen. Cancer Res 1988;47:6528–6531.

    Google Scholar 

  137. Carrasquillo JA, Sugarbaker PH, Colcher D, Reynolds JC, Esteban JCM, Bryant G, et al. Peritoneal carcinomatosis: Imaging with intraperitoneal injection of I-131-labeled B72.3 monoclonal antibody. Radiology 1988;167:35–40.

    PubMed  CAS  Google Scholar 

  138. Colcher D, Esteban JCM, Carrasquillo JA, Sugarbaker PH, Reynolds JC, Bryant G, et al. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res 1987;47:4218–4224.

    PubMed  CAS  Google Scholar 

  139. Epenetos AA, Munro AJ, Stewart S, Rampling R, Lambert HE, McKenzie CG, et al. Antibody-guided irradiation of advanced ovarian cancer with intraperitoneally administered radiolabeled monoclonal antibodies. J Clin Oncol 1987;5:1890–1899.

    PubMed  CAS  Google Scholar 

  140. Stewart JS, Hird V, Sullivan M, Snook D, Epenetos AA. Intraperitoneal radioimmunotherapy for ovarian cancer. Br J Obstet Gyn 1989;96:529–536.

    Article  CAS  Google Scholar 

  141. Hird V, Stewart JS, Snook D, Dhokia B, Coulter C, Lambert HE, et al. Intraperitoneally administered 90Y-labelled monoclonal antibodies as a third line of treatment in ovarian cancer. A phase 1–2 trial: Problems encoutered and possible solutions. Br J Cancer 1990;62(Suppl X):48–51.

    Article  Google Scholar 

  142. Muto MG, Finkler NJ, Kassis AI, Howes AE, Anderson LL, Lau CC, et al. Intraperitoneal radioimmunotherapy of refractory ovarian carcinoma utilizing iodine-131-labeled monoclonal antibody OC125. Gynecol Oncol 1992;45:265–272.

    Article  PubMed  CAS  Google Scholar 

  143. Buckman R, De Angelis C, Shaw P, Covens A, Osborne R, Kerr I, et al. Intraperitoneal therapy of malignant ascites associated with carcinoma of ovary and breast using radioiodinated monoclonal antibody 2G3. Gynecol Oncol 1992;47:102–109.

    Article  PubMed  CAS  Google Scholar 

  144. Hird V, Maraveyas A, Snook D, Dhokia B, Soutter WP, Meares C, et al. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer 1993;68:403–406.

    Article  PubMed  CAS  Google Scholar 

  145. Crippa F. Radioimmunotherapy of ovarian cancer. Int J Biol Markers 1993;8:187–191.

    PubMed  CAS  Google Scholar 

  146. Sickle-Santanello BJ, O’Dwyer PJ, Mojzisik C, Tuttle SE, Hinkle GH, Rousseau M, et al. Radioimmunoguided surgery using the monoclonal antibody B72.3 in colorectal tumors. Dis Col Rest 1987;30:761–764.

    Article  CAS  Google Scholar 

  147. Tuttle SE, Jewell SD, Moizisik CM, Hinkle GH, Colcher D, Schlom J. Intraoperative radioimmunolocalization of colorectal carcinoma with a hand held gamma probe and MAb B72.3: Comparison of in vivo gamma probe count with in vitro MAb radiolocalization. Int J Cancer 1988;42:352–358.

    Article  PubMed  CAS  Google Scholar 

  148. Matzku S, Bröcker EB, Brüggen J, Dippold WG, Tilgen W. Modes of binding and internalization of monoclonal antibodies to human melanoma cell lines. Cancer Res 1986;46:3848–3854.

    PubMed  CAS  Google Scholar 

  149. Willingham MC, FitzGerald DJ, Pastan I. Pseudomonas exotoxin coupled to a monoclonal antibody against ovarian cancer inhibits the growth of human ovarian cancer cells in a mouse model. Proc Natl Acad Sci USA 1987;84:2474–2478.

    Article  PubMed  CAS  Google Scholar 

  150. Griffin TW, Richardson C, Houston LL, Lepage D, Bogden A, Raso V. Antitumor activity of intraperitoneal immunotoxins in a nude mouse model of human malignant mesothelioma. Cancer Res 1987;27:4266–4270.

    Google Scholar 

  151. Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 1992;52:6310–6317.

    PubMed  CAS  Google Scholar 

  152. Pai LH, Bookman MA, Ozols RF, Young RC, Smith II JW, Longo DL, et al. Clinical evaluation of intraperitoneal Pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J Clin Oncol 1991;9:2095–2103.

    PubMed  CAS  Google Scholar 

  153. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 1985;316:354–356.

    Article  PubMed  CAS  Google Scholar 

  154. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM. Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 1987;138:4018–4022.

    PubMed  CAS  Google Scholar 

  155. Titus JA, Perez P, Kaubisch A, Garrido MA, Segal DM. Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol 1987;139:3153–3158.

    PubMed  CAS  Google Scholar 

  156. Kuppen PJK, Eggermont AMM, Smits KM, et al. The development and purification of a bispecific antibody for lymphokine-activated killer cell targeting against the rat colon carcinoma CC531. Cancer Immunol Immunother 1993;36:403–408.

    Article  PubMed  CAS  Google Scholar 

  157. Barr IG, Miescher S, von Fliedner V, Buchegger F, Barras C, Lanzavecchia A, et al. In vivo localization of a bispecific antibody which retargets human T lymphocytes of lyse human colon cancer cells. Int J Cancer 1989;43:501–507.

    Article  PubMed  CAS  Google Scholar 

  158. Mezzanzanica D, Canevari S, Menard S, Pupa SM, Tagliabue E, Lanzavecchia A, et al. Human ovarian carcinoma lysis by cytotoxic T cells targeted by bispecific monoclonal antibodies: Analysis of the antibody components. Int J Cancer 1988;41:609–615.

    Article  PubMed  CAS  Google Scholar 

  159. van Ravenswaay Claasen HH, van de Griend RJ, Mezzanzanica D, Bolhuis RLH, Warnaar SO, Fleuren GJ. Analysis of production, purification, and cytolytic potential of bispecific antibodies reactive with ovarian-carcinoma associated antigens and the T-cell antigen CD3. Int J Cancer 1993;55:128–136.

    Article  PubMed  Google Scholar 

  160. Beun GDM, van Eendenburg JD, Corver WE, van de Velde CJH, Fleuren GJ. T-cell retargeting using bispecific monoclonal antibodies in a rat colon carcinoma model. I. Significant bispecific lysis of syngeneic colon carcinoma CC531 is critically dependent on prolonged preactivation of effector T-lymphocytes by immobilized anti-T-cell receptor antibody. J Immunother 1992;11:238–248.

    Article  PubMed  CAS  Google Scholar 

  161. van Ravenswaay Claasen HH, Eggermont AMM, Nooyen YA, Warnaar SO, Fleuren GJ. Immunotherapy in a human ovarian cancer xenograft model with two bispecific monoclonal antibodies: OV-TL 3/CD3 and OC/TR. Gynecol Oncol 1994;52:199–206.

    Article  PubMed  Google Scholar 

  162. Nelson H, Ramsey PS, Kerr LA, McKean DJ, Donohue JH. Regional and systemic distribution of anti-tumor x anti-CD3 heteroaggregate antibodies and cultured human peripheral blood lymphocytes in a human colon cancer xenograft. J Immunol 1990;145: 3507–3515.

    PubMed  CAS  Google Scholar 

  163. Bolhuis RLH, Lamers CHJ, Goey SH, Eggermont AMM, Trimbos JBMZ, Stoter G, et al. Adoptive immunotherapy of ovarian carcinoma with BS-MAb-targeted lymphocytes: A multicenter study. Int J Cancer 1992;7:78–81.

    CAS  Google Scholar 

  164. Melder RJ, Whiteside TL, Vujanovic NL, Hiserodt JC, Herberman RB. A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Res 1988;48:3461–3469.

    PubMed  CAS  Google Scholar 

  165. Ochoa AC, Gromo G, Alter BJ, Sondei PM, Bach FH. Long-term growth of lymphokine-activated killer (LAK) cells: Role of anti-CD3, beta-IL 1, interferon-gamma and -beta. J Immunol 1987;138:2728–2733.

    PubMed  CAS  Google Scholar 

  166. Knazek RA, Wu YW, Aebersold PM, Rosenberg SA. Culture of human tumor infiltrating lymphocytes in hollow fiber bioreactors. J Immunol Methods 1990;127:29–37.

    Article  PubMed  CAS  Google Scholar 

  167. Migliori RJ, Gruber SA, Sawyer MD, Hoffman R, Ochoa AC, Bach FH, et al. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation. Surgery 1987;102:156–162.

    Google Scholar 

  168. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986;164:1193–1205.

    Google Scholar 

  169. Kradin RL, Boyle LA, Preffer FI, Callahan RJ, Barlai-Kovach M, Strauss HW, et al. Tumor-derived interleukin-2-dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol Immunother 1987;24:76–85.

    Article  PubMed  CAS  Google Scholar 

  170. Itoh K, Tilden AB, Balch CM. Interleukin-2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res 1986;46:3011–3017.

    PubMed  CAS  Google Scholar 

  171. Muul LM, Spiess P, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor. J Immunol 1987;138:989–995.

    PubMed  CAS  Google Scholar 

  172. Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang JC, Fisher B, et al. In vivo distribution of adoptively transferred indium-ill-labeled tummor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 1989;81:1709–1717.

    Article  PubMed  CAS  Google Scholar 

  173. Rosenberg SA, Packard B, Aebersold P. Use of tumor infiltrating lymphocytes and IL2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 1988;319: 1676–1680.

    Article  PubMed  CAS  Google Scholar 

  174. Rubin SC. Monoclonal antibodies in the management of ovarian cancer. A clinical perspective. Cancer 1993;71:1602–1612.

    Article  PubMed  CAS  Google Scholar 

  175. Ikarashi H, Fujita K, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, et al. Immunomodulation in patients with epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Cancer Res 1994;54:190–196.

    PubMed  CAS  Google Scholar 

  176. Boyer CM, Borowitz MJ, McCarty KS, Jr., Kinney RB, Everitt L, Dawson DV, et al. Heterogeneity of antigen expression in benign and malignant breast and ovarian epithelial cells. Int J Cancer 1989;43:55–60.

    Article  PubMed  CAS  Google Scholar 

  177. Maraveyas A, Epenetos AA. An overview of radioimmunotherapy. Cancer Immunol Immunother 1991;34:71–74.

    Article  PubMed  CAS  Google Scholar 

  178. Bolhuis RLH, Sturm E, Braakman E. T cell targeting in cancer therapy. Cancer Immunol Immunother 1991;34:1–8.

    Article  PubMed  CAS  Google Scholar 

  179. Kartner N, Ling V. Multidrug resistance in cancer. Sci Am 1989;260:44–51.

    Article  PubMed  CAS  Google Scholar 

  180. Perez RP, Hamilton TC, Ozols RF, Young RC. Mechanisms and modulation of resistance to chemotherapy in ovarian cancer. Cancer 1993;71:1571–1580.

    Article  PubMed  CAS  Google Scholar 

  181. Dijk Juvan, Tsuruo T, Segal DM, Bolhuis RLH, Colognola R, van de Griend RJ, et al. Bispecific antibodies reactive with the multidrug-resistance-related glycoprotein and CD3 induce lysis of multidrug-resistant tumor cells. Int J Cancer 1989;44:738–743.

    Article  Google Scholar 

  182. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. Gene transfer into humans: Immunotherapy of patients with advanced melanoma, using tumorinfiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323:570–578.

    Article  PubMed  CAS  Google Scholar 

  183. Rosenberg SA. Gene therapy of cancer. Import Adv Oncol 1992;17–38.

    Google Scholar 

  184. Bolhuis LH, Sturm E, Gratama JW, Braakman E. Engineering T lymphocyte antigen specificity. J Cell Biochem 1991;47:306–310.

    Article  PubMed  CAS  Google Scholar 

  185. Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993;178: 361–366.

    Article  PubMed  CAS  Google Scholar 

  186. Cameron R, Mcintosh J, Rosenberg SA. Synergistic antitumor effects of combination immunotherapy with recombinant interleukin-2 and a recombinant hybrid alpha-interferon in the treatment of established murine metastases. Cancer Res 1988;48:5810–5817.

    PubMed  CAS  Google Scholar 

  187. Rosenberg SA, Lotze MT, Yang JC, Linehan WM, Seipp C, Calabro S, et al. Combination therapy with interleukin-2 and alpha-interferon for the treatment of patients with advanced cancer. J Clin Oncol 1989;7:1863–1874.

    PubMed  CAS  Google Scholar 

  188. Owen-Schaub LB, Gutterman JU, Grimm EA. Synergy of tumor necrosis factor and interleukin 2 in the activation of human cytotoxic lymphocytes: Effect of tumor necrosis factor-alpha and interleukin 2 in the generation of human lymphokine activated killer cell cytotoxicity. Cancer Res 1988;48:788–792.

    PubMed  CAS  Google Scholar 

  189. Mcintosh JK, Mule JJ, Krosnick JA, Rosenberg SA. Combination cytokine immunotherapy with tumor necrosis factor alpha, interleukin-2 and alpha-interferon and its synergistic antitumor effects in mice. Cancer Res 1989;49:1408–1414.

    PubMed  CAS  Google Scholar 

  190. Mitchell MS, Kempf RA, Harel W, Shaw H, Boswell WD, Lind S, et al. Effectiveness and tolerability of low-dose cyclophosphamide and low-dose intravenous interleukin-2 against disseminated melanoma. Am J Clin Oncol 1988;6:409–424.

    CAS  Google Scholar 

  191. Cameron RB, Spiess P, Rosenberg SA. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin-2 and local tumor irradiation. J Exp Med 1990;171:249–256.

    Article  PubMed  CAS  Google Scholar 

  192. Chapman PB, Kolitz JE, Hakes TB, et al. A phase I trial of intraperitoneal recombinant interleukin-2 in patients with cancer. Invest New Drugs 1988;6(Suppl 3):179–188.

    Article  PubMed  CAS  Google Scholar 

  193. Melioli G, Baldini E, Mingari MC, De Maria A, Sertoli MR, Badellino F, et al. Phenotypic and functional characteristics of tumor-associated lymphocytes in patients with malignant ascites receiving intraperitoneal infusions of recombinant interleukin-2 (rIL-2). Int J Cancer 1989;43:231–234.

    Article  PubMed  CAS  Google Scholar 

  194. Stewart JA, Belinso JL, Moore AL, Dorighi JA, Grant BW, Haugh LD, et al. Phase I clinical trial of intraperitoneal recombinant interleukin-2/lymphokine-activated killer cells in patients with ovarian cancer. Cancer Res 1990;50:6302–6310.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

van Ravenswaay Claasen, H.H., Eggermont, A.M.M. (1996). Intraperitoneal immunotherapy of cancer: A review of options for treatment. In: Sugarbaker, P.H. (eds) Peritoneal Carcinomatosis: Principles of Management. Cancer Treatment and Research, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1247-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1247-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8531-1

  • Online ISBN: 978-1-4613-1247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics