Skip to main content

On the Interplay Between Nonparametric and Parametric IRT, with Some Thoughts About the Future

  • Chapter
Essays on Item Response Theory

Part of the book series: Lecture Notes in Statistics ((LNS,volume 157))

Abstract

This chapter reviews some of the important research in nonparametric and parametric item response theory (IRT) today, and considers some current measurement challenges in education and cognitive psychology. This leads to assessment models that do not look very much like today’s IRT models, but for which the tools and conceptual framework of nonparametric and parametric IRT are still quite well suited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, T.A. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 7, 255–278.

    Google Scholar 

  • Adams, R.J., Wilson, M., & Wang, W.-C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.

    Google Scholar 

  • Algina, J. (1992). The National Assessment of Educational Progress (Editor’s Note) [Special issue]. Journal of Educational Measurement, 29, 93–94.

    Google Scholar 

  • Anderson, J.R. (Ed.). (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4, 167–207.

    Google Scholar 

  • Andrich, D. (1996). A hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert methodologies. British Journal of Mathematical and Statistical Psychology, 49, 347–365.

    MathSciNet  MATH  Google Scholar 

  • Bartolucci, F., & Forcina, A. (in press). A likelihood ratio test for MTP2 within binary variables. The Annals of Statistics.

    Google Scholar 

  • Baxter, G.P., & Glaser, R. (1998). Investigating the cognitive complexity of science assessments. Educational Measurement: Issues and Practice, 17, 37–45.

    Google Scholar 

  • Béguin, A.A., & Glas, C.A.W. (1998). MCMC estimation of multidimensional IRT models. (Research Report 98-14). University of Twente, Department of Educational Measurement and Data Analysis, The Netherlands.

    Google Scholar 

  • Bloom, B.S. (1984). The 2-sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13, 4–16.

    Google Scholar 

  • Bock, R.D., & Zimowski, M.F. (1997). Multi-group IRT. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 433–448). New York: Springer-Verlag.

    Google Scholar 

  • Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Google Scholar 

  • Cliff, N., & Donoghue, J.R. (1992). Ordinal test fidelity estimated by an item sampling model. Psychometrika, 57, 217–236.

    Google Scholar 

  • Corbett, A.T., Anderson, J.R., & O’Brien, A.T. (1995). Student modeling in the ACT programming tutor. In P.D. Nichols, S.F. Chipman, & R.L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 19–41). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • DiBello, L., Jiang, H., & Stout, W.F. (2000). A multidimensional IRT model for practical cognitive diagnosis. Manuscript submitted for publication.

    Google Scholar 

  • Douglas, J., & Qui, P. (1997). Generalized linear factor analysis with Markov chain Monte Carlo. Unpublished manuscript, University of Wisconsin, Department of Biostatistics and Medical Informatics, Madison,WI.

    Google Scholar 

  • Draney, K. L., Pirolli, P., & Wilson, M. (1995). A measurement model for a complex cognitive skill. In P.D. Nichols, S.F. Chipman, & R.L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 103–125). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Drasgow, F., Levine, M.V., Tsien, S., Williams, B., & Mead, A.D. (1995). Fitting polytomous item response theory models to multiple-choice tests. Applied Psychological Measurement, 19, 143–165.

    Google Scholar 

  • Ellis, J.L. (1994). Foundations of monotone latent variable models. Nijmegen: Nijmegen Institute for Cognition and Information.

    Google Scholar 

  • Ellis, J.L., & Junker, B.W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62, 495–523.

    MathSciNet  MATH  Google Scholar 

  • Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–515.

    MATH  Google Scholar 

  • Embretson, S.E. (1995). Developments toward a cognitive design system for psychological tests. In D. Lubinski & R.V. Dawis (Eds.), Assessing individual differences in human behavior: New concepts, methods and findings (pp. 17–48). Palo Alto, CA: Davies-Black Publishing.

    Google Scholar 

  • Embretson, S.E. (1997). Multicomponent response models. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 305–321). New York: Springer-Verlag.

    Google Scholar 

  • Embretson, S.E. (1999). Generating items during testing: Psychometric issues and models. Psychometrika, 64, 407–433.

    Google Scholar 

  • Engelhard, G., Jr. (1994). Examining rater errors in the assessment of written composition with many-faceted Rasch models. Journal of Educational Measurement, 31, 93–112.

    Google Scholar 

  • Fischer, G.H. (1973). Linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

    Google Scholar 

  • Fischer, G.H., & Molenaar, I.W. (Eds.). (1995). Rasch models: Foundations, recent developments, and applications. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Fox, G.J.A., & Glas, C.A.W. (1998). A multi-level IRT model with measurement error in the predictor variables (Research Report 98-16). University of Twente, Department of Educational Measurement and Data Analysis, The Netherlands.

    Google Scholar 

  • Fraser, C., & McDonald, R.P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research 23, 267–269.

    Google Scholar 

  • Gardner, H. (1992). Assessment in context: The alternative to educational testing. In B.R. Gifford & M.C. O’Connor (Eds.), Changing assessments: Alternative views of aptitude, achievement, and instruction (pp. 77–119). Norwell, MA: Kluwer.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. New York: Chapman and Hall.

    Google Scholar 

  • Gibbons, R.D., & Hedeker, D.R. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423–436.

    MATH  Google Scholar 

  • Gibbons, R.D., & Hedeker, D.R. (1997). Random effects probit and logistic regression models for three-level data. Biometrics, 53, 1527–1537.

    MATH  Google Scholar 

  • Glas, C.A.W., & Verhelst, N.D. (1989). Extensions of the partial credit model. Psychometrika, 54, 635–659.

    MATH  Google Scholar 

  • Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383–392.

    MathSciNet  MATH  Google Scholar 

  • Haertel, E.H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301–321.

    Google Scholar 

  • Hemker, B.T. (2001). Reversibility revisited and other comparisons of three types of polytomous IRT models. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 277–296). New York: Springer-Verlag.

    Google Scholar 

  • Hemker, B.T., Sijtsma, K., & Molenaar, I.W. (1995). Selection of unidimensional scales from a multidimensional item bank in the polytomous Mokken IRT model. Applied Psychological Measurement, 19, 337–352.

    Google Scholar 

  • Hemker, B.T., Sijtsma K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693.

    MATH  Google Scholar 

  • Hemker, B.T., Sijtsma K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347.

    MathSciNet  MATH  Google Scholar 

  • Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171–189.

    MATH  Google Scholar 

  • Holland, P.W. (1981). When are item response models consistent with observed data? Psychometrika, 46, 79–92.

    MathSciNet  MATH  Google Scholar 

  • Holland, P.W. (1990). The Dutch identity: A new tool for the study of item response models. Psychometrika, 55, 5–18.

    MathSciNet  MATH  Google Scholar 

  • Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent trait models. The Annals of Statistics, 14, 1523–1543.

    MathSciNet  MATH  Google Scholar 

  • Huguenard, B.R., Lerch, F.J., Junker, B.W., Patz, R.J., & Kass, R.E. (1997). Working memory failure in phone-based interaction. ACM Transactions on Computer-Human Interaction, 4, 67–102.

    Google Scholar 

  • Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 77–79.

    MathSciNet  MATH  Google Scholar 

  • Jaakkola, T.S., & Jordan, M.I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10, 25–37.

    Google Scholar 

  • Janssen, R., & De Boeck, P. (1997). Psychometric modeling of componentially designed synonym tasks. Applied Psychological Measurement, 21, 37–50.

    Google Scholar 

  • Johnson, E.G., Mislevy, R.J., & Thomas, N. (1994). Theoretical background and philosophy of NAEP scaling procedures. In E.G. Johnson, J. Mazzeo, & D.L. Kline (Eds.), Technical Report of the NAEP 1992 Trial State Assessment Program in Reading (pp. 133–146). Washington, DC: Office of Educational Research and Improvement, U.S. Department of Education.

    Google Scholar 

  • Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. The Annals of Statistics, 21, 1359–1378.

    MathSciNet  MATH  Google Scholar 

  • Junker, B.W. (1998). Some remarks on Scheiblechner’s treatment of ISOP models. Psychometrika, 63, 73–85.

    MathSciNet  MATH  Google Scholar 

  • Junker, B.W., & Ellis, J.L. (1997). A characterization of monotone unidimensional latent variable models. The Annals of Statistics, 25, 1327–1343.

    MathSciNet  MATH  Google Scholar 

  • Junker, B.W., Koedinger, K.R., & Trottini, M. (2000, July). Finding improvements in student models for intelligent tutoring systems via variable selection for a linear logistic test model. Paper presented at the Annual North American Meeting of the Psychometric Society, Vancouver, Canada.

    Google Scholar 

  • Junker, B.W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24, 65–81.

    Google Scholar 

  • Kass, R.E., Tierney, L., & Kadane, J.B. (1990). The validity of posterior expansions based on Laplace’s method. In S. Geisser, J.S. Hodges, S.J. Press, & A. Zellner (Eds.), Bayesian and likelihood methods in statistics and econometrics: Essays in honor of George A. Barnard (pp. 473–488). New York: North-Holland.

    Google Scholar 

  • Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149–176.

    MATH  Google Scholar 

  • Lee, Y., & Neider, J.A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society, Series B, 58, 619–678.

    MATH  Google Scholar 

  • Linacre, J.M. (1989). Many-faceted Rasch measurement. Chicago: Mesa Press.

    Google Scholar 

  • Liu, C., & Rubin, D.B. (1998). Maximum likelihood estimation of factor analysis using the ECME algorithm with complete and incomplete data. Statistica Sinica, 8, 729–747.

    MathSciNet  MATH  Google Scholar 

  • Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of “scale analysis” and factor analysis. Psychological Bulletin, 45, 507–530.

    Google Scholar 

  • Lord, F.M. (1952). A theory of test scores. Psychometric Monographs, 7.

    Google Scholar 

  • Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523–547.

    MATH  Google Scholar 

  • Maris, E., De Boeck, P., & Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 7–29.

    MATH  Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    MATH  Google Scholar 

  • McCullagh, P., & Neider, J.A. (1989). Generalized linear models (2nd ed.). New York: Chapman and Hall.

    MATH  Google Scholar 

  • Meijer, R.R. (1996). Person-fit research: An introduction. (Guest editor’s introduction to the Special issue: Person-fit research: Theory and applications.) Applied Measurement in Education, 9, 3–8.

    Google Scholar 

  • Meijer, R.R., Sijtsma, K., & Smid, N.G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14, 283–298.

    Google Scholar 

  • Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement, 19, 91–100.

    Google Scholar 

  • Meredith, W. (1965). Some results based on a general stochastic model for mental tests. Psychometrika, 30, 419–440.

    MathSciNet  MATH  Google Scholar 

  • Mislevy, R.J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80, 993–997.

    MathSciNet  Google Scholar 

  • Mislevy, R.J. (1996). Test theory reconceived. Journal of Educational Measurement, 33, 379–416.

    Google Scholar 

  • Mislevy, R.J., & Sheehan, K.M. (1989). The role of collateral information about examinees in item parameter estimation Psychometrika, 54, 661–679.

    Google Scholar 

  • Mokken, R.J. (1971). A theory and procedure of scale analysis: With applications in political research. The Hague: Mouton.

    Google Scholar 

  • Mokken, R.J. (1997). Nonparametric models for dichotomous items. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 351–368). New York: Springer-Verlag.

    Google Scholar 

  • Molenaar, I.W. (1991). A weighted Loevinger H-coefficient extending Mokken scaling to multicategory items. Kwantitatieve Methoden, 37, 97–117.

    Google Scholar 

  • Molenaar, I.W. (1997). Nonparametric methods for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern psychometrics (pp. 369–380). New York: Springer-Verlag.

    Google Scholar 

  • Molenaar, I.W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows: A program for Mokken scale analysis for polytomous items. Version 5.0 [Software manual]. Groningen: ProGAMMA.

    Google Scholar 

  • Muraki, E., & Carlson, J.E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90

    Google Scholar 

  • Nichols, P., & Sugrue, B. (1999). The lack of fidelity between cognitively complex constructs and conventional test development practice. Educational Measurement: Issues and Practice, 18, 18–29.

    Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999a). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.

    Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342–366.

    Google Scholar 

  • Patz, R.J., Junker, B.W., & Johnson, M.S. (2000). The hierarchical rater model for rated test items and its application to large-scale educational assessment data. (CMU Statistics Technical Report #712). Carnegie Mellon University, Department of Statistics, Pittsburgh, PA.

    Google Scholar 

  • Patz, R.J., Junker, B.W., Lerch, F.J., & Huguenard, B.R. (1996). Analyzing small psychological experiments with item response models (CMU Statistics Department Technical Report #644). Carnegie Mellon University, Department of Statistics, Pittsburgh, PA.

    Google Scholar 

  • Post, W.J. (1992). Nonparametric unfolding models. A latent structure approach. Leiden: DSWO Press.

    MATH  Google Scholar 

  • Post, W.J., & Snijders, T.A.B. (1993). Nonparametric unfolding models for dichotomous data. Methodika, 7, 130–156.

    Google Scholar 

  • Ramsay, J.O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630.

    MathSciNet  MATH  Google Scholar 

  • Ramsay, J.O. (1995). A similarity-based smoothing approach to nondimensional item analysis. Psychometrika, 60, 323–339.

    MATH  Google Scholar 

  • Ramsay, J.O. (1996). A geometrical approach to item response theory. Behaviormetrika, 23, 3–17.

    Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press.)

    Google Scholar 

  • Reckase, M.D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401–412.

    Google Scholar 

  • Resnick, L.B., & Resnick, D.P. (1992). Assessing the thinking curriculum: New tools for educational reform. In B.R. Gifford & M.C. O’Connor (Eds.), Changing assessments: Alternative views of aptitude, achievement, and instruction (pp. 37–75). Norwell, MA: Kluwer.

    Google Scholar 

  • Rigdon, S.E., & Tsutakawa, R.K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567–574.

    MathSciNet  MATH  Google Scholar 

  • Robertson, T., Wright, F.T., & Dykstra, R.L. (1988). Order restricted statistical inference. New York: Wiley.

    MATH  Google Scholar 

  • Rosenbaum, P.R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435.

    MathSciNet  MATH  Google Scholar 

  • Rosenbaum, P.R. (1987a). Probability inequalities for latent scales. British Journal of Mathematical and Statistical Psychology, 40, 157–168.

    MathSciNet  MATH  Google Scholar 

  • Rosenbaum, P.R. (1987b). Comparing item characteristic curves. Psychometrika, 52, 217–233.

    MathSciNet  MATH  Google Scholar 

  • Roussos, L. (1994). Summary and review of cognitive diagnosis models. Unpublished manuscript, Law School Admissions Council, Newton, PA.

    Google Scholar 

  • Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17.

    Google Scholar 

  • Samejima, F. (1995). Acceleration model in the heterogeneous case of the general graded response model. Psychometrika, 60, 549–572.

    MathSciNet  MATH  Google Scholar 

  • Samejima, F. (1997). Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling. Psychometrika, 62, 471–493.

    MATH  Google Scholar 

  • Scheiblechner, H. (1972). Das Lernen und Lösen komplexer Denkaufgaben [The learning and solving of complex reasoning items]. Zeitschrift für Experimentelle und Angewandte Psychologie, 3, 456–506.

    Google Scholar 

  • Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281–304.

    MathSciNet  MATH  Google Scholar 

  • Seltman, H. (1999). Hidden stochastic models for biological rhythm data. Unpublished Ph.D. dissertation, Carnegie Mellon University, Department of Statistics, Pittsburgh, PA.

    Google Scholar 

  • Shute, V.J., & Psotka, J. (1996). Intelligent tutoring systems: Past, Present and Future. In D. Jonassen (Ed.), Handbook of Research on Educational Communications and Technology (pp. 570–600). New York: Macmillan Press.

    Google Scholar 

  • Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 3–32.

    MathSciNet  Google Scholar 

  • Sijtsma, K., & Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika, 63, 183–200.

    MathSciNet  MATH  Google Scholar 

  • Sijtsma, K., & Junker, B.W. (1996). A survey of theory and methods of invariant item ordering. British Journal of Mathematical and Statistical Psychology, 49, 79–105.

    MathSciNet  MATH  Google Scholar 

  • Sijtsma, K., & Junker, B.W. (1997). Invariant item ordering of transitive reasoning tasks. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 97–107). Münster: Waxmann Verlag.

    Google Scholar 

  • Sijtsma, K., & Van der Ark, L.A. (2001). Progress in NIRT analysis of polytomous item scores: Dilemmas and practical solutions. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 297–318). New York: Springer-Verlag.

    Google Scholar 

  • Snijders, T.A.B. (2001). Two-level nonparametric scaling for dichotomous data. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 319–338). New York: Springer-Verlag.

    Google Scholar 

  • Snijders, T.A.B., & Nowicki, K. (1997). Estimation and prediction for stochastic block models for graphs with latent block structure. Journal of Classification, 14 75–100.

    MathSciNet  MATH  Google Scholar 

  • Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259–267.

    MATH  Google Scholar 

  • Stout, W.F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617.

    MathSciNet  MATH  Google Scholar 

  • Stout, W.F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293–325.

    MathSciNet  MATH  Google Scholar 

  • Stout, W.F., Habing, B., Douglas, J., Kim, H.R., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331–354.

    Google Scholar 

  • Tanner, M.A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions (3rd ed.). New York: Springer-Verlag.

    MATH  Google Scholar 

  • Tatsuoka, K.K. (1990). Toward an integration of item response theory and cognitive error diagnosis. In N. Fredriksen, R. Glaser, A. Lesgold, & M.G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 453–488). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Ter Hofstede, F., Steenkamp, J.-B.E.M., & Wedel, M. (1999). Identifying spatial segments in international markets. Manuscript submitted for publication.

    Google Scholar 

  • Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567–577.

    MATH  Google Scholar 

  • Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39–56.

    MathSciNet  MATH  Google Scholar 

  • Van der Ark, L.A. (1999, July). A reference card for the relations between IRT models for polytomous items and some relevant properties. Paper presented at the European Meeting of the Psychometric Society in Lüneburg, Germany.

    Google Scholar 

  • Van der Linden, W.J., & Hambleton, R.K. (Eds.). (1997). Handbook of modern item response theory. New York: Springer-Verlag.

    MATH  Google Scholar 

  • VanLehn, K., & Niu, Z. (in press). Bayesian student modeling, user interfaces and feedback: A sensitivity analysis. International Journal of Artificial Intelligence in Education.

    Google Scholar 

  • VanLehn, K., Niu, Z., Siler, S., & Gertner, A. (1998). Student modeling from conventional test data: A Bayesian approach without priors. In B.P. Goetl, H.M. Halff, C.L. Redfield, & V.J. Shute (Eds.), Proceedings of the Intelligent Tutoring Systems Fourth International Conference, ITS 98 (pp. 434–443). Berlin: Springer-Verlag.

    Google Scholar 

  • Verhelst, N.D., & Verstralen, H.H.F.M. (1993). A stochastic unfolding model derived from the partial credit model. Kwantitatieve Methoden, 42, 73–92.

    Google Scholar 

  • Verhelst, N.D., & Verstralen, H.H.F.M. (2001). An IRT model for multiple raters. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 89–108). New York: Springer-Verlag.

    Google Scholar 

  • Wilson, M.R., & Hoskens, M. (1999). The rater bundle model. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Canada.

    Google Scholar 

  • Wilson, D., Wood, R.L., & Gibbons, R. (1983). TESTFACT: Test scoring and item factor analysis [Computer software]. Chicago: Scientific Software.

    Google Scholar 

  • Wu, M.L., Adams, R.J., & Wilson, M.R. (1997). ConQuest: Generalized item response modeling software [Software manual]. Melbourne: Australian Council for Educational Research.

    Google Scholar 

  • Yamamoto, K., & Gitomer, D.H. (1993). Application of a HYBRID model to a test of cognitive skill representation. In N. Fredriksen & R.J. Mislevy (Eds.), Test theory for a new generation of tests (pp. 275–295). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Yuan, A., & Clarke, B. (1999). Manifest characterization and testing for two latent traits. Manuscript submitted for publication.

    Google Scholar 

  • Zhang, J., & Stout, W.F. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213–249.

    MathSciNet  Google Scholar 

  • Zimowski, M.F., Muraki, E., Mislevy, R.J., & Bock, R.D. (1997). BILOGMG: Multiple-group IRT analysis and test maintenance for binary items [Computer software]. Chicago: Scientific Software.

    Google Scholar 

  • Zwick, R. (1992). The National Assessment of Educational Progress [Special issue]. Journal of Educational Measurement, 17, 93–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Junker, B. (2001). On the Interplay Between Nonparametric and Parametric IRT, with Some Thoughts About the Future. In: Boomsma, A., van Duijn, M.A.J., Snijders, T.A.B. (eds) Essays on Item Response Theory. Lecture Notes in Statistics, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0169-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0169-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95147-8

  • Online ISBN: 978-1-4613-0169-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics