Skip to main content

Structures, Materials, and Processes at the Electrode-to-Tissue Interface

  • Chapter
  • First Online:
Visual Prosthetics
  • 1588 Accesses

Abstract

This chapter reviews the basic concepts of neural stimulation along with safety considerations for both the electrode and tissue. The section on electrode–electrolyte interface describes the basic mechanism of charge injection at the interface introducing the reader to the electrode double layer. The use of circuit models to represent the physical processes at the interface and in the bulk tissue is discussed. The next section provides a detailed description of the biopotential electrode along with measurement techniques used in electrode characterization. Following this, an overview of popular electrode materials for neural stimulation is provided for the reader. These include conventional materials such as platinum and iridium oxide, as well as newer materials like conducting polymers and carbon nanotubes. The next section reviews the concept of extracellular stimulation introducing the reader to Goldman Equation used to describe the membrane potential. Finally the section dedicated to safe stimulation of tissue describes the mechanisms of neural injury and parameters considered to ensure safe neural stimulation. Special emphasis is placed on safety studies of retinal stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIROF:

Anodic iridium oxide films

CMOS:

Complimentary metal-oxide semiconductor

CNTs:

Carbon nanotubes

CPE:

Constant phase element

CV:

Cyclic voltammetry

EAD:

Early axonal degeneration

EIS:

Electrochemical impedance spectroscopy

ERGs:

Electroretinograms

IHP:

Inner helmholtz plane

OHP:

Outer helmholtz plane

PBS:

Phosphate buffered saline

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PSTHs:

Post stimulus time histograms

SIDNE:

Stimulation induced depression in neuronal excitability

SIROF:

Sputtered iridium oxide film

TiN:

Titanium nitride

TIROF:

Thermal iridium oxide film

References

  1. Ahuja AK, Behrend MR, Whalen JJ, et al. (2008), The dependence of spectral impedance on disc microelectrode radius. IEEE Trans Biomed Eng, 55(4): p. 1457–60.

    Article  Google Scholar 

  2. Baig-Silva MS, Hathcock CD, Hetling JR (2005), A preparation for studying electrical stimulation of the retina in vivo in rat. J Neural Eng, 2(1): p. S29–38.

    Article  Google Scholar 

  3. Bard AJ, Faulkner LR (2004), Electrocehmical Methods: Fundamentals and Applications. Second ed, New York: Wiley.

    Google Scholar 

  4. Beebe X, Rose TL (1988), Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng, 35(6): p. 494–5.

    Article  Google Scholar 

  5. Brug GJ, Van Den Eeden ALG, Sluythers-Rehbach M, Suythers JH (1984), The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem, 176: p. 275–95.

    Article  Google Scholar 

  6. Brummer SB, Turner MJ (1975), Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerg, 2: p. 13–25.

    Article  Google Scholar 

  7. Brummer SB, Turner MJ (1977), Electrical stimulation with Pt electrodes: I-a method for determination of “real” electrode areas. IEEE Trans Biomed Eng, 24(5): p. 436–9.

    Article  Google Scholar 

  8. Brummer SB, Turner MJ (1977), Electrical stimulation with Pt electrodes: II-estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans Biomed Eng, 24(5): p. 440–3.

    Article  Google Scholar 

  9. Cogan SF, Ehrlich J, Plante TD, et al. (2009), Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater, 89(2): p. 353–61.

    Google Scholar 

  10. Cogan SF, Guzelian AA, Agnew WF, et al. (2004), Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Methods, 137(2): p. 141–50.

    Article  Google Scholar 

  11. Colodetti L, Weiland JD, Colodetti S, et al. (2007), Pathology of damaging electrical stimulation in the retina. Exp Eye Res, 85(1): p. 23–33.

    Article  Google Scholar 

  12. Cui XY, Hetke J, F, Wiler JA, et al. (2001), Electrochemical deposition and characterization of conducting ploymer polypyrrole/pss on multichannel neural probes. Sens Actuators A Phys, 93: p. 8–18.

    Article  Google Scholar 

  13. Cui X, Lee VA, Raphael Y, et al. (2001), Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res, 56(2): p. 261–72.

    Article  Google Scholar 

  14. Cui XY, Martin DC (2003), Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens Actuators B Chem, 89: p. 92–102.

    Article  Google Scholar 

  15. Cui X, Wiler J, Dzaman M, et al. (2003), In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials, 24(5): p. 777–87.

    Article  Google Scholar 

  16. Cui XT, Zhou DD (2007), Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng, 15(4): p. 502–8.

    Article  Google Scholar 

  17. Eisenfeld AJ, Bunt-Milam AH, Sarthy PV (1984), Muller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci, 25(11): p. 1321–8.

    Google Scholar 

  18. Evans DH (1991), Review of voltammetric methods for the study of electrode reactions, in Microelectrodes: Theory and Applications, Montenegro I, Queiros MA, Daschbach JL, eds., Dordrecht: Kluwer Academic.

    Google Scholar 

  19. Franks W, Schenker I, Hierlmann A (2005), Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng, 52(7): p. 1295–302.

    Article  Google Scholar 

  20. Fujikado T, Morimoto T, Kanda H, et al. (2007), Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol, 245(10): p. 1411–9.

    Article  Google Scholar 

  21. Geddes LA (1997), Historical evolution of circuit models for the electrode–electrolyte interface. Ann Biomed Eng, 25(1): p. 1–14.

    Article  MathSciNet  Google Scholar 

  22. Geddes LA (1999), Chronaxie. Australas Phys Eng Sci Med, 22(1): p. 13–17.

    Google Scholar 

  23. Geddes LA (2004), Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng, 51(1): p. 176–81.

    Article  Google Scholar 

  24. Geddes LA, Bourland JD (1985), The strength-duration curve. IEEE Trans Biomed Eng, 32(6): p. 458–9.

    Article  Google Scholar 

  25. Germain PS, Pell WG, Conway BE (2004), Evaluation and origins of the differences between double-layer capacitance behaviour at Au-metal and oxidized Au surfaces. Electrochim Acta, 49: p. 1775–88.

    Article  Google Scholar 

  26. Greenbaum E, Sanders C, Zhou D (2006), Dynamic interactions at retinal prosthesis electrode interface. Invest Ophthalmol Visual Sci 47, ARVO E-abstr#3200.

    Google Scholar 

  27. Guven D, Weiland JD, Fujii G, et al. (2005), Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng, 2(1): p. S65–73.

    Article  Google Scholar 

  28. Hamann CH, Hamnett A, Vielstich W (1998), Methods for the study of electrode/electrolyte interface, Chapter 5 in Electrochemistry, Weinheim, Germany: Wiley-VCH, p. 251–338.

    Google Scholar 

  29. Jensen RJ, Ziv OR, Rizzo JF, III (2005), Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. Invest Ophthalmol Vis Sci, 46(4):p. 1486–96.

    Article  Google Scholar 

  30. Kandel ER, Schwartz JH, Jessell TM (2000), Principles of Neural Science. Fourth ed, New York: McGraw-Hill.

    Google Scholar 

  31. Kim DH, Abidian M, Martin DC (2004), Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J Biomed Mater Res A, 71(4): p. 577–85.

    Article  Google Scholar 

  32. Lapicque L (1909), Definition experimentale de l’excitabilite. C R Acad Sci, 67(2): p. 280–3.

    Google Scholar 

  33. Lasia A (2002), Electrochemical impedance spectroscopy and its application, in Modern Aspects of Electrochemistry, Conway BE, Bockris JOM, White RE, eds., New York: Kluwer Academic.

    Google Scholar 

  34. Lilly JC (1961), Injury and excitation by electric currents: the balanced pulse-pair waveform, in Electrical Stimulation of the Brain, Sheer DE, ed., Austin, TX: Hogg Foundation for Mental Health.

    Google Scholar 

  35. McCreery DB (2004), Tissue reaction to electrodes: the problem of safe and effective stimulation of neural tissue, in Neuroprosthetics: Theory and Practice, Horch KW, Dhillon GS, eds., Singapore: World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  36. McCreery DB, Agnew WF, Bullara LA (2002), The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann Biomed Eng, 30(1): p. 107–19.

    Article  Google Scholar 

  37. McCreery DB, Agnew WF, Yuen TG, Bullara L (1990), Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng, 37(10): p. 996–1001.

    Article  Google Scholar 

  38. McCreery DB, Agnew WF, Yuen TG, Bullara LA (1995), Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med Biol Eng Comput, 33(3 Spec No): p. 426–9.

    Article  Google Scholar 

  39. Merrill DR, Bikson M, Jefferys JG (2005), Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods, 141(2): p. 171–98.

    Article  Google Scholar 

  40. Nakauchi K, Fujikado T, Kanda H, et al. (2007), Threshold suprachoroidal-transretinal stimulation current resulting in retinal damage in rabbits. J Neural Eng, 4(1): p. S50–7.

    Article  Google Scholar 

  41. Plonsey R, Barr RC (1991), Functional neuromuscular stimulation, Chapter 12 in Bioelectricity: A Quantitative Approach, New York: Plenum, p. 271–299.

    Google Scholar 

  42. Prokhorov E, Llamas F, Morales-Sanchez E, et al. (2002), In vivo impedance measurements on nerves and surrounding skeletal muscles in rats and human body. Med Biol Eng Comput, 40(3): p. 323–6.

    Article  Google Scholar 

  43. Rattay F (1989), Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng, 36(7): p. 676–82.

    Article  Google Scholar 

  44. Rattay F (1999), The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89(2): p. 335–46.

    Article  Google Scholar 

  45. Richardson-Burns SM, Hendricks JL, Foster B, et al. (2007), Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials, 28(8): p. 1539–52.

    Article  Google Scholar 

  46. Richardson-Burns SM, Hendricks JL, Martin DC (2007), Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng, 4(2): p. L6–13.

    Article  Google Scholar 

  47. Robblee LS, Rose TL (1990), Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies, Agnew WF, McCreery DB, eds., Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  48. Rose TL, Robblee LS (1990), Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng, 37(11): p. 1118–20

    Article  Google Scholar 

  49. Sachs HG, Gekeler F, Schwahn H, et al. (2005), Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development. Eur J Ophthalmol, 15(4): p. 493–9.

    Google Scholar 

  50. Sekirnjak C, Hottowy P, Sher A, et al. (2006), Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol, 95(6): p. 3311–27.

    Article  Google Scholar 

  51. Shannon RV (1992), A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng, 39(4): p. 424–6.

    Article  Google Scholar 

  52. Stieglitz T (2004), Electrode materials for recording and stimulation, in Neuroprosthetics: Theory and Practice, Horch KW, Dhillon GS, eds., Vol. 2, Singapore: World Scientific.

    Google Scholar 

  53. Wang K, Fishman HA, Dai H, Harris JS (2006), Neural stimulation with a carbon nanotube microelectrode array. Nano Lett, 6(9): p. 2043–8.

    Article  Google Scholar 

  54. Weiland JD, Anderson DJ (2000), Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng, 47(7): p. 911–8.

    Article  Google Scholar 

  55. Weiland JD, Anderson DJ, Humayun MS (2002), In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng, 49(12 Pt 2): p. 1574–9.

    Article  Google Scholar 

  56. Weiland JD, Liu W, Humayun MS (2005), Retinal prosthesis. Annu Rev Biomed Eng, 7: p. 361–401.

    Article  Google Scholar 

  57. Whalen JJ, Weiland JW, Searson P (2005), Electrochemical deposition of platinum from aqueous ammonium hexachloroplatinate solution. J Electrochem Soc, 152(11): p. C738–43.

    Article  Google Scholar 

  58. Yang JY, Martin DC (2004), Microporous conducting polymers on neural microelectrode arrays II. Physical characterization. Sens Actuators A Phys, 113A: p. 204–11.

    Article  Google Scholar 

  59. Zrenner E (2002), The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica, 216(Suppl 1): p. 8–20; discussion 52–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ray, A., Weiland, J.D. (2011). Structures, Materials, and Processes at the Electrode-to-Tissue Interface. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics