Skip to main content

Cortical Plasticity and Reorganization in Severe Vision Loss

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

Blind individuals make striking adjustments to their loss of sight. Current experimental evidence suggests that these behavioral adaptations are based on dramatic neurophysiological changes at the level of the brain. In particular, is the fact that the occipital cortex (the area of the brain normally ascribed with visual processing) is functionally recruited to process non-visual sensory modalities. The impact of these neuroplastic changes on the success of implementing a rehabilitative strategy such as a visual based neuroprosthesis remains unknown. Here we discuss several factors such as potential limits of plasticity, potential mechanisms and methods to modulate neuroplasticity so as to promote rehabilitative potential. We should thus remain aware that some of the impediments to future progress in visual neuroprosthesis development are not only technical, engineering and surgical issues, but are also related to the development and implementation of strategies designed to interface with the visually deprived brain. New evidence regarding experience-dependent plasticity in the adult brain together with the achievements in other neuroprosthesis efforts allows cautious optimism that some degree of functional vision can be restored in profoundly blind individuals. However, it is essential that future research explore the mechanisms underlying brain plasticity following the loss of vision. These new findings should be integrated in order to enhance the development of suitable rehabilitative strategies for each particular type of visual neuroprosthesis and achieve the best possible behavioral outcome for a given person using these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

d-AMPH:

d-Amphetamine

rTMS:

Repetitive transcranial magnetic stimulation

SPECT:

Single photon emission computerized tomography

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

References

  1. Adachi K, Lee JC, Hu JW, et al. (2007), Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res, 24(3): p. 97–109.

    Article  Google Scholar 

  2. Alfaro A, Concepcion L, Merabet L, Fernandez E (2006), An atypical presentation of visual hallucinatory experiences following prolonged blindness. Neurocase, 12(4): p. 212–5.

    Article  Google Scholar 

  3. Alonso-Alonso M, Fregni F, Pascual-Leone A (2007), Brain stimulation in poststroke rehabilitation. Cerebrovasc Dis, 24(Suppl 1): p. 157–66.

    Article  Google Scholar 

  4. Amedi A, Floel A, Knecht S, et al. (2004), Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci, 7(11): p. 1266–70.

    Article  Google Scholar 

  5. Amedi A, Raz N, Pianka P, et al. (2003), Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci, 6(7): p. 758–66.

    Article  Google Scholar 

  6. Anderson SW, Rizzo M (1994), Hallucinations following occipital lobe damage: the pathological activation of visual representations. J Clin Exp Neuropsychol, 16(5): p. 651–63.

    Article  Google Scholar 

  7. Bach-y-Rita P (2004), Tactile sensory substitution studies. Ann N Y Acad Sci, 1013: p. 83–91.

    Article  Google Scholar 

  8. Baker CI, Peli E, Knouf N, Kanwisher NG (2005), Reorganization of visual processing in macular degeneration. J Neurosci, 25(3): p. 614–8.

    Article  Google Scholar 

  9. Bao S, Chan VT, Merzenich MM (2001), Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842): p. 79–3.

    Article  Google Scholar 

  10. Barbay S, Zoubina EV, Dancause N, et al. (2006), A single injection of d -amphetamine facilitates improvements in motor training following a focal cortical infarct in squirrel monkeys. Neurorehabil Neural Repair, 20(4): p. 455–8.

    Article  Google Scholar 

  11. Barker AT, Jalinous R, Freeston IL (1985), Non-invasive magnetic stimulation of human motor cortex. Lancet, 1: p. 1106–7.

    Article  Google Scholar 

  12. Bavelier D, Neville HJ (2002), Cross-modal plasticity: where and how? Nat Rev Neurosci, 3(6): p. 443–52.

    Google Scholar 

  13. Bernabeu A, Alfaro A, Garcia M, Fernandez E (2009), Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage, 47(4): p. 1172–6.

    Article  Google Scholar 

  14. Bouccara D, Avan P, Mosnier I, et al. (2005), Auditory rehabilitation. Med Sci (Paris), 21(2): p. 190–7.

    Google Scholar 

  15. Breitenstein C, Wailke S, Bushuven S, et al. (2004), d -Amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology, 29(9): p. 1704–14.

    Article  Google Scholar 

  16. Buonomano DV, Merzenich MM (1998), Cortical plasticity: from synapses to maps. Annu Rev Neurosci, 21: p. 149–86.

    Article  Google Scholar 

  17. Burton H, Snyder AZ, Conturo TE, et al. (2002), Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol, 87(1): p. 589–607.

    Google Scholar 

  18. Cajal SR (1904), Textura del sistema nervioso del hombre y de los vertebrados. Imprenta y librería de Nicolás Moya: Madrid.

    Google Scholar 

  19. Calford MB, Chino YM, Das A, et al. (2005), Neuroscience: rewiring the adult brain. Nature, 438(7065): p. E3; discussion E3–4.

    Article  Google Scholar 

  20. Celesia GG (2005), Visual plasticity and its clinical applications. J Physiol Anthropol Appl Human Sci, 24(1): p. 23–7.

    Article  Google Scholar 

  21. Celnik P, Hummel F, Harris-Love M, et al. (2007), Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil, 88(11): p. 1369–76.

    Article  Google Scholar 

  22. Cheung SH, Legge GE (2005), Functional and cortical adaptations to central vision loss. Vis Neurosci, 22(2): p. 187–201.

    Article  Google Scholar 

  23. Cogan DG (1973), Visual hallucinations as release phenomena. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 188(2): p. 139–50.

    Article  Google Scholar 

  24. Cohen LG, Celnik P, Pascual-Leone A, et al. (1997), Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647): p. 180–3.

    Article  Google Scholar 

  25. Cohen LG, Ziemann U, Chen R, et al. (1998), Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol, 15(4): p. 305–24.

    Article  Google Scholar 

  26. Dagnelie G (2006), Visual prosthetics 2006: assessment and expectations. Expert Rev Med Devices, 3(3): p. 315–25.

    Article  Google Scholar 

  27. Dilks DD, Serences JT, Rosenau BJ, et al. (2007), Human adult cortical reorganization and consequent visual distortion. J Neurosci, 27(36): p. 9585–94.

    Article  Google Scholar 

  28. Dreher B, Burke W, Calford MB (2001), Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomas. Prog Brain Res, 134: p. 217–46.

    Article  Google Scholar 

  29. Duque J, Mazzocchio R, Stefan K, et al. (2008), Memory formation in the motor cortex ipsilateral to a training hand. Cereb Cortex, 18: p. 1395–406.

    Google Scholar 

  30. Dyck RH, Chaudhuri A, Cynader MS (2003), Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys. Cereb Cortex, 13(10): p. 1094–109.

    Article  Google Scholar 

  31. Fallon JB, Irvine DR, Shepherd RK (2008), Cochlear implants and brain plasticity. Hear Res, 238(1–2): p. 110–7.

    Article  Google Scholar 

  32. Fernandez E, Alfaro A, Tormos JM, et al. (2002), Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Protoc, 10: p. 115–24.

    Article  Google Scholar 

  33. Fernandez E, Pelayo F, Romero S, et al. (2005), Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng, 2(4): p. R1–12.

    Article  Google Scholar 

  34. Ferrandez JM, Alfaro A, Bonomini P, et al. (2003), Brain plasticity: feasibility of a cortical visual prosthesis for the blind. In Engineering in Medicine and Biology Society. Proceedings of the 25th Annual International Conference of the IEEE.

    Google Scholar 

  35. Fine I, Wade AR, Brewer AA, et al. (2003), Long-term deprivation affects visual perception and cortex. Nat Neurosci, 6(9): p. 915–6.

    Article  Google Scholar 

  36. Finney EM, Fine I, Dobkins KR (2001), Visual stimuli activate auditory cortex in the deaf. Nat Neurosci, 4(12): p. 1171–3.

    Article  Google Scholar 

  37. Froemke RC, Merzenich MM, Schreiner CE (2007), A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168): p. 425–9.

    Article  Google Scholar 

  38. Gizewski ER, Gasser T, de Greiff A, et al. (2003), Cross-modal plasticity for sensory and motor activation patterns in blind subjects. Neuroimage, 19(3): p. 968–75.

    Article  Google Scholar 

  39. Gregory RL (2003), Seeing after blindness. Nat Neurosci, 6(9): p. 909–10.

    Article  Google Scholar 

  40. Hamilton R, Keenan JP, Catala M, Pascual-Leone A (2000), Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport, 11(2): p. 237–40.

    Article  Google Scholar 

  41. Hebb DO (1947), The effects of early experience on problem solving at maturity. Am Psychol, 2: p. 737–45.

    Google Scholar 

  42. Hernandez Muela S, Mulas F, Mattos L (2004), Functional neuronal plasticity. Rev Neurol, 38(Suppl 1): p. 58–68.

    Google Scholar 

  43. Hummel FC, Cohen LG (2005), Drivers of brain plasticity. Curr Opin Neurol, 18(6): p. 667–74.

    Article  Google Scholar 

  44. Hummel FC, Cohen LG (2006), Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol, 5(8): p. 708–12.

    Article  Google Scholar 

  45. Iwai Y, Fagiolini M, Obata K, Hensch TK (2003), Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci, 23(17): p. 6695–702.

    Google Scholar 

  46. Johansson BB (2000), Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke, 31(1): p. 223–30.

    Google Scholar 

  47. Kaas JH (2002), Sensory loss and cortical reorganization in mature primates. Prog Brain Res, 138: p. 167–76.

    Article  Google Scholar 

  48. Kaas JH, Krubitzer LA, Chino YM, et al. (1990), Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): p. 229–31.

    Article  Google Scholar 

  49. Komitova M, Johansson BB, Eriksson PS (2006), On neural plasticity, new neurons and the postischemic milieu: an integrated view on experimental rehabilitation. Exp Neurol, 199(1): p. 42–55.

    Article  Google Scholar 

  50. Kral A, Tillein J, Heid S, et al. (2006), Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res, 157: p. 283–313.

    Article  Google Scholar 

  51. Kujala T, Alho K, Paavilainen P, et al. (1992), Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr Clin Neurophysiol, 84(5): p. 469–72.

    Article  Google Scholar 

  52. Lee DS, Lee JS, Oh SH, et al. (2001), Cross-modal plasticity and cochlear implants. Nature, 409(6817): p. 149–50.

    Article  Google Scholar 

  53. Loeb GE (1990), Cochlear prosthetics. Annu Rev Neurosci, 13: p. 357–71.

    Article  Google Scholar 

  54. Maeda K, Yasuda H, Haneda M, Kashiwagi A (2003), Braille alexia during visual hallucination in a blind man with selective calcarine atrophy. Psychiatry Clin Neurosci, 57(2): p. 227–9.

    Article  Google Scholar 

  55. Mahncke HW, Bronstone A, Merzenich MM (2006), Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res, 157: p. 81–109.

    Article  Google Scholar 

  56. Mahncke HW, Connor BB, Appelman J, et al. (2006), Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci USA, 103(33): p. 12523–8.

    Article  Google Scholar 

  57. Manford M, Andermann F (1998), Complex visual hallucinations. Clinical and neurobiological insights. Brain, 121(Pt 10): p. 1819–40.

    Article  Google Scholar 

  58. Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA (2008), V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb Cortex, 18: p. 2483–93.

    Google Scholar 

  59. McDermott HJ (2004), Music perception with cochlear implants: a review. Trends Amplif, 8(2): p. 49–82.

    Article  Google Scholar 

  60. Merabet LB, Pascual-Leone A (2010), Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci, 11(1): p. 44–52.

    Article  Google Scholar 

  61. Merabet LB, Rizzo JF, Amedi A, et al. (2005), What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci, 6(1): p. 71–7.

    Article  Google Scholar 

  62. Merabet LB, Rizzo JF, III, Pascual-Leone A, Fernandez E (2007), ‘Who is the ideal candidate?’: decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. J Neural Eng, 4(1): p. S130–5.

    Article  Google Scholar 

  63. Merabet L, Thut G, Murray B, et al. (2004), Feeling by sight or seeing by touch? Neuron, 42(1): p. 173–9.

    Article  Google Scholar 

  64. Middlebrooks JC, Bierer JA, Snyder RL (2005), Cochlear implants: the view from the brain. Curr Opin Neurobiol, 15(4): p. 488–93.

    Article  Google Scholar 

  65. Mitchell TV, Maslin MT (2007), How vision matters for individuals with hearing loss. Int J Audiol, 46(9): p. 500–11.

    Article  Google Scholar 

  66. Nair DG, Hutchinson S, Fregni F, et al. (2007), Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage, 34(1): p. 253–63.

    Article  Google Scholar 

  67. Normann RA, Maynard E, Guillory KS, Warren DJ (1996), Cortical implants for the blind. IEEE Spectrum, 33(5): p. 54–9.

    Article  Google Scholar 

  68. Nudo RJ (2003), Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med, 41(Suppl): p. 7–10.

    Article  Google Scholar 

  69. Nudo RJ (2003), Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am, 14(1 Suppl): p. S57–76.

    Google Scholar 

  70. Nudo RJ (2006), Plasticity. NeuroRx, 3(4): p. 420–7.

    Article  Google Scholar 

  71. Nudo RJ, Jenkins WM, Merzenich MM (1990), Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosens Mot Res, 7(4): p. 463–83.

    Article  Google Scholar 

  72. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005), The plastic human brain cortex. Annu Rev Neurosci, 28: p. 377–401.

    Article  Google Scholar 

  73. Pascual-Leone A, Hamilton R, Tormos JM, et al. (1999), Neuroplasticity in the adjustment to blindness. In Neuronal Plasticity: Building a Bridge from the Laboratory to the Clinic, J. Grafman, Christen Y, Editors. Springer: Berlin.

    Google Scholar 

  74. Pena C, Bowsher K, Samuels-Reid J (2004), FDA-approved neurologic devices intended for use in infants, children, and adolescents. Neurology, 63(7): p. 1163–7.

    Google Scholar 

  75. Plautz EJ, Barbay S, Frost SB, et al. (2003), Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res, 25(8): p. 801–10.

    Article  Google Scholar 

  76. Ptito M, Kupers R (2005), Cross-modal plasticity in early blindness. J Integr Neurosci, 4(4): p. 479–88.

    Article  Google Scholar 

  77. Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005), Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128(Pt 3): p. 606–14.

    Article  Google Scholar 

  78. Ramos-Estebanez C, Merabet LB, Machii K, et al. (2007), Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation. J Neurosci, 27(15): p. 4178–81.

    Article  Google Scholar 

  79. Rauschecker JP (1995), Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci, 18(1): p. 36–43.

    Article  Google Scholar 

  80. Roder B, Stock O, Bien S, et al. (2002), Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci, 16(5): p. 930–6.

    Article  Google Scholar 

  81. Roder B, Teder-Salejarvi W, Sterr A, et al. (1999), Improved auditory spatial tuning in blind humans. Nature, 400(6740): p. 162–6.

    Article  Google Scholar 

  82. Sadato N, Pascual-Leone A, Grafman J, et al. (1996), Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380(6574): p. 526–8.

    Article  Google Scholar 

  83. Sadato N, Pascual-Leone A, Grafman J, et al. (1998), Neural networks for Braille reading by the blind. Brain, 121(Pt 7): p. 1213–29.

    Article  Google Scholar 

  84. Shaw KN, Commins S, O’Mara SM (2003), Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur J Neurosci, 17(11): p. 2438–46.

    Article  Google Scholar 

  85. Shaw CA, Lanius RA, van den Doel K (1994), The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Res Brain Res Rev, 19(3): p. 241–63.

    Article  Google Scholar 

  86. Smirnakis SM, Brewer AA, Schmid MC, et al. (2005), Lack of long-term cortical reorganization after macaque retinal lesions. Nature, 435(7040): p. 300–7.

    Article  Google Scholar 

  87. Sonde L, Lokk J (2007), Effects of amphetamine and/or l -dopa and physiotherapy after stroke – a blinded randomized study. Acta Neurol Scand, 115(1): p. 55–9.

    Article  Google Scholar 

  88. Stroemer RP, Kent TA, Hulsebosch CE (1998), Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d -amphetamine therapy after neocortical infarction in rats. Stroke, 29(11): p. 2381–93; discussion 2393–5.

    Google Scholar 

  89. Thickbroom GW (2007), Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res, 180(4): p. 583–93.

    Article  Google Scholar 

  90. Uhl F, Franzen P, Lindinger G, et al. (1991), On the functionality of the visually deprived occipital cortex in early blind persons. Neurosci Lett, 124(2): p. 256–9.

    Article  Google Scholar 

  91. Uhl F, Franzen P, Podreka I, et al. (1993), Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci Lett, 150(2): p. 162–4.

    Article  Google Scholar 

  92. Van Boven RW, Hamilton RH, Kauffman T, et al. (2000), Tactile spatial resolution in blind Braille readers (1). Am J Ophthalmol, 130(4): p. 542.

    Article  Google Scholar 

  93. Weeks R, Horwitz B, Aziz-Sultan A, et al. (2000), A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci, 20(7): p. 2664–72.

    Google Scholar 

  94. Whiting E, Chenery HJ, Chalk J, Copland DA (2007), Dexamphetamine boosts naming treatment effects in chronic aphasia. J Int Neuropsychol Soc, 13(6): p. 972–9.

    Article  Google Scholar 

  95. Zepeda A, Sengpiel F, Guagnelli MA, et al. (2004), Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits. J Neurosci, 24(8): p. 1812–21.

    Article  Google Scholar 

  96. Zhou X, Merzenich MM (2007), Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proc Natl Acad Sci USA, 104(40): p. 15935–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fernández, E., Merabet, L.B. (2011). Cortical Plasticity and Reorganization in Severe Vision Loss. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics