Skip to main content

Vision’s First Steps: Anatomy, Physiology, and Perception in the Retina, Lateral Geniculate Nucleus, and Early Visual Cortical Areas

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

This chapter reviews the functional anatomical bases of visual perception in the retina, the lateral geniculate nucleus (LGN) in the visual thalamus, the primary visual cortex (area V1, also called the striate cortex, and Brodmann area 17), and the extrastriate visual cortical areas of the dorsal and ventral pathways.

The sections dedicated to the retina and LGN review the basic anatomical and laminar organization of these two areas, as well as their retinotopic organization and receptive field structure. We also describe the anatomical and functional differences among the magnocellular, parvocelullar and koniocellular pathways.

The section dedicated to area V1 reviews the functional maps in this area (retinotopic map, ocular dominance map, orientation selectivity map), as well as their anatomical relationship to each other. Special attention is given to the modular columnar organization of area V1, and to the various receptive field classes in V1 neurons.

The section dedicated to extrastriate cortical visual areas describes the “where” and “what” pathways in the dorsal and ventral visual streams, and their respective physiological functions.

The temporal dynamics of neurons throughout the visual pathway are critical to understanding visibility and neural information processing. We discuss the role of lateral inhibition circuits in processing spatiotemporal edges, corners, and in the temporal dynamics of vision.

We also discuss the effects of eye movements on visual physiology and perception in early visual areas. Our visual and oculomotor systems must achieve a very delicate balance: insufficient eye movements lead to adaptation and visual fading, whereas excessive motion of the eyes produces blurring and unstable vision during fixation. These issues are very important for neural prosthetics, in which electrodes are stabilized on the substrate.

Finally, another critical issue for neural prosthetics concerns the neural code for visual perception: How can the electrical activity of a neuron, or a neuronal population, encode and transmit visual information about an object? Here we will discuss how neurons of early visual areas may communicate information about the visible world to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

area MST:

Medial superior temporal area

area MT:

Middle temporal visual area

area V1:

Primary visual cortex

DOG:

Difference of gaussians

GABA:

Gamma-aminobutyric acid

LGN:

Lateral geniculate nucleus

References

  1. Ahnelt PK, Kolb H, Pflug R (1987), Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol, 255(1): p. 18–34.

    Google Scholar 

  2. Albrecht DG (1995), Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions. Vis Neurosci, 12(6): p. 1191–210.

    MathSciNet  Google Scholar 

  3. Albrecht DG, Hamilton DB (1982), Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48: p. 217–37.

    Google Scholar 

  4. Albright TD (1984), Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol, 52(6): p. 1106–30.

    Google Scholar 

  5. Alitto HJ, Usrey WM (2003), Corticothalamic feedback and sensory processing. Curr Opin Neurobiol, 13(4): p. 440–5.

    Google Scholar 

  6. Alonso JM, Cudeiro J, Perez R, et al. (1993), Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res, 93(2): p. 363–6.

    Google Scholar 

  7. Alonso JM, Cudeiro J, Perez R, et al. (1993), Orientational influences of layer V of visual area 18 upon cells in layer V of area 17 in the cat cortex. Exp Brain Res, 96(2): p. 212–20.

    Google Scholar 

  8. Alonso JM, Martinez LM (1998), Functional connectivity between simple cells and complex cells in cat striate cortex. Nat Neurosci, 1(5): p. 395–403.

    Google Scholar 

  9. Alonso JM, Usrey WM, Reid RC (2001), Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci, 21(11): p. 4002–15.

    Google Scholar 

  10. Anderson JC, Martin KA, Whitteridge D (1993), Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. Cereb Cortex, 3(5): p. 412–20.

    Google Scholar 

  11. Angelucci A, Levitt JB, Walton EJ, et al. (2002), Circuits for local and global signal integration in primary visual cortex. J Neurosci, 22(19): p. 8633–46.

    Google Scholar 

  12. Attneave F (1954), Some informational aspects of visual perception. Psychol Rev, 61(3): p. 183–93.

    Google Scholar 

  13. Baker JF, Petersen SE, Newsome WT, Allman JM (1981), Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. J Neurophysiol, 45(3): p. 397–416.

    Google Scholar 

  14. Barlow HB (1961), Possible principlesunderlying the transformation of sensory messages, in Sensory Communication, Rosenblith WA, Editor. MIT Press: Cambridge, MA. p. 217–34.

    Google Scholar 

  15. Barlow HB (1989), Unsupervised learning. Neural Computation, 1: p. 295–311.

    Google Scholar 

  16. Barlow HB, Fitzhugh R, Kuffler SW (1957), Change of organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol, 137: p. 228–54.

    Google Scholar 

  17. Barone P, Batardiere A, Knoblauch K, Kennedy H (2000), Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci, 20(9): p. 3263–81.

    Google Scholar 

  18. Bauer R, Dow BM, Vautin RG (1980), Laminar distribution of preferred orientations in foveal striate cortex of the monkey. Exp Brain Res, 41(1): p. 54–60.

    Google Scholar 

  19. Benevento LA, Standage GP (1982), Demonstration of lack of dorsal lateral geniculate nucleus input to extrastriate areas MT and visual 2 in the macaque monkey. Brain Res, 252(1): p. 161–6.

    Google Scholar 

  20. Blasdel G, Obermayer K, Kiorpes L (1995), Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Vis Neurosci, 12(3): p. 589–603.

    Google Scholar 

  21. Blasdel GG, Fitzpatrick D (1984), Physiological organization of layer 4 in macaque striate cortex. J Neurosci, 4(3): p. 880–95.

    Google Scholar 

  22. Blasdel GG, Lund JS (1983), Termination of afferent axons in macaque striate cortex. J Neurosci, 3(7): p. 1389–413.

    Google Scholar 

  23. Blasdel GG, Lund JS, Fitzpatrick D (1985), Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C. J Neurosci, 5(12): p. 3350–69.

    Google Scholar 

  24. Blasdel GG, Salama G (1986), Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature, 321(6070): p. 579–85.

    Google Scholar 

  25. Bolz J, Gilbert CD (1986), Generation of end-inhibition in the visual cortex via interlaminar connections. Nature, 320(6060): p. 362–5.

    Google Scholar 

  26. Bonhoeffer T, Grinvald A (1991), Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353(6343): p. 429–31.

    Google Scholar 

  27. Bonin V, Mante V, Carandini M (2005), The suppressive field of neurons in lateral geniculate nucleus. J Neurosci, 25(47): p. 10844–56.

    Google Scholar 

  28. Bowling DB (1980), Light responses of ganglion cells in the retina of the turtle. J Physiol, 299: p. 173–96.

    Google Scholar 

  29. Boycott BB, Dowling JE (1969), Organization of the primate retina: light microscopy. Philos Trans R Soc Lond B Biol Sci, B, 255: p. 109–84.

    Google Scholar 

  30. Boycott BB, Wassle H (1991), Morphological Classification of Bipolar Cells of the Primate Retina. Eur J Neurosci, 3(11): p. 1069–88.

    Google Scholar 

  31. Brodmann K (1909), Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien­Dargestellt auf Grund des Zellenbaues. Leipzig: Barth.

    Google Scholar 

  32. Brown PK, Wald G (1963), Visual pigments in human and monkey retinas. Nature, 200: p. 37–43.

    Google Scholar 

  33. Brown PK, Wald G (1964), Visual Pigments In Single Rods And Cones Of The Human Retina.Direct Measurements Reveal Mechanisms Of Human Night And Color Vision. Science, 144: p. 45–52.

    Google Scholar 

  34. Bullier J, Henry GH (1980), Ordinal position and afferent input of neurons in monkey striate cortex. J Comp Neurol, 193(4): p. 913–35.

    Google Scholar 

  35. Bullier J, Kennedy H (1983), Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Exp Brain Res, 53(1): p. 168–72.

    Google Scholar 

  36. Callaway EM (1998), Local circuits in primary visual cortex of the macaque monkey. AnnuRev Neurosci, 21: p. 47–74.

    Google Scholar 

  37. Callaway EM, Wiser AK (1996), Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex. Vis Neurosci, 13(5): p. 907–22.

    Google Scholar 

  38. Carandini M (2004), Receptive fields and suppressive fields in the early visual system, in The cognitive neurosciences, Gazzaniga MS, Editor. MIT Press: Cambridge, MA.

    Google Scholar 

  39. Carandini M, Heeger DJ, Movshon JA (1997), Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci, 17(21): p. 8621–44.

    Google Scholar 

  40. Chance FS, Nelson SB, Abbot LF (1999), Complex cells as cortically amplified simple cells. Nature Neurosciece, 2: p. 277–82.

    Google Scholar 

  41. Cicerone CM, Nerger JL (1989), The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vision Res, 29(1): p. 115–28.

    Google Scholar 

  42. Conley M, Fitzpatrick D (1989), Morphology of retinogeniculate axons in the macaque. Vis Neurosci, 2(3): p. 287–96.

    Google Scholar 

  43. Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997), Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol, 77(6): p. 3381–5.

    Google Scholar 

  44. Curcio CA, Allen KA, Sloan KR, et al. (1991), Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol, 312(4): p. 610–24.

    Google Scholar 

  45. Curcio CA, Sloan KR, Jr., Packer O, et al. (1987), Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science, 236(4801): p. 579–82.

    Google Scholar 

  46. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990), Human photoreceptor topography. J Comp Neurol, 292(4): p. 497–523.

    Google Scholar 

  47. Dacey D, Packer OS, Diller L, et al. (2000), Center surround receptive field structure of cone bipolar cells in primate retina. Vision Res, 40(14): p. 1801–11.

    Google Scholar 

  48. Dacey DM (1993), The mosaic of midget ganglion cells in the human retina. J Neurosci, 13(12): p. 5334–55.

    Google Scholar 

  49. Dacey DM (1999), Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res, 18(6): p. 737–63.

    Google Scholar 

  50. Dacey DM (2000), Parallel pathways for spectral coding in primate retina. AnnuRev Neurosci, 23: p. 743–75.

    Google Scholar 

  51. Dacey DM, Petersen MR (1992), Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA, 89(20): p. 9666–70.

    Google Scholar 

  52. Damasio AR, Benton AL (1979), Impairment of hand movementsunder visual guidance. Neurology, 29(2): p. 170–4.

    Google Scholar 

  53. Damasio AR, Damasio H, Van Hoesen GW (1982), Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology, 32(4): p. 331–41.

    Google Scholar 

  54. Das A, Gilbert CD (1999), Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399(6737): p. 655–61.

    Google Scholar 

  55. De Monasterio FM, Gouras P (1975), Functional properties of ganglion cells of the rhesus monkey retina. J Physiol, 251(1): p. 167–95.

    Google Scholar 

  56. de Monasterio FM, Schein SJ (1982), Spectral bandwidths of color-opponent cells of geniculocortical pathway of macaque monkeys. J Neurophysiol, 47(2): p. 214–24.

    Google Scholar 

  57. De Valois RL (1960), Color vision mechanisms in the monkey. J Gen Physiol, 43(6): p. 115–28.

    Google Scholar 

  58. Dean P (1976), Effects of inferotemporal lesions on the behavior of monkeys. Psychol Bull, 83(1): p. 41–71.

    MathSciNet  Google Scholar 

  59. Desimone R, Fleming J, Gross CG (1980), Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res, 184(1): p. 41–55.

    Google Scholar 

  60. Desimone R, Gross CG (1979), Visual areas in the temporal cortex of the macaque. Brain Res, 178(2–3): p. 363–80.

    Google Scholar 

  61. Desimone R, Schein SJ (1987), Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol, 57(3): p. 835–68.

    Google Scholar 

  62. Desimone R, Schein SJ, Moran J, Ungerleider LG (1985), Contour, color and shape analysis beyond the striate cortex. Vision Res, 25(3): p. 441–52.

    Google Scholar 

  63. Desimone R, Ungerleider LG (1986), Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol, 248(2): p. 164–89.

    Google Scholar 

  64. Desimone R, Ungerleider LG (1989), Neural mechanisims of visual processing in monkeys, in Handbook of neuropsychology, Boller F, Graman J, Editors. Elsevier: Amsterdam. p. 267–99.

    Google Scholar 

  65. Donner KO, Reuter T (1965), The dark-adaptation of singleunits in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res, 5(11): p. 615–32.

    Google Scholar 

  66. Dowling JE, Boycott BB (1966), Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci, 166(2): p. 80–111.

    Google Scholar 

  67. Erisir A, Van Horn SC, Sherman SM (1997), Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci USA, 94(4): p. 1517–20.

    Google Scholar 

  68. Felleman DJ, Van Essen DC (1991),Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1): p. 1–47.

    Google Scholar 

  69. Ferster D, Chung S, Wheat H (1996), Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature, 380(6571): p. 249–52.

    Google Scholar 

  70. Ferster D, Koch C (1987), Neuronal connectionsunderlying orientation selectivity in cat visual cortex. Trendes Neurosci, 10: p. 487–92.

    Google Scholar 

  71. Ferster D, Miller KD (2000), Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci, 23: p. 441–71.

    Google Scholar 

  72. Fitzpatrick D, Lund JS, Blasdel GG (1985), Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci, 5(12): p. 3329–49.

    Google Scholar 

  73. Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994), The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci, 11(2): p. 307–15.

    Google Scholar 

  74. Gallant JL, Braun J, Van Essen DC (1993), Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 259(5091): p. 100–3.

    Google Scholar 

  75. Gallant JL, Connor CE, Rakshit S, et al. (1996), Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol, 76(4): p. 2718–39.

    Google Scholar 

  76. Gattass R, Gross CG (1981), Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol, 46(3): p. 621–38.

    Google Scholar 

  77. Gawne TJ, Kjaer TW, Richmond BJ (1996), Latency: another potential code for feature binding in striate cortex. J Neurophysiol, 76(2): p. 1356–60.

    Google Scholar 

  78. Gilbert CD (1977), Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol, 268(2): p. 391–421.

    Google Scholar 

  79. Gilbert CD, Das A, Ito M, et al. (1996), Spatial integration and cortical dynamics. Proc Natl Acad Sci USA, 93(2): p. 615–22.

    Google Scholar 

  80. Gilbert CD, Wiesel TN (1979), Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature, 280(5718): p. 120–5.

    Google Scholar 

  81. Gilbert CD, Wiesel TN (1983), Clustered intrinsic connections in cat visual cortex. J Neurosci, 3(5): p. 1116–33.

    Google Scholar 

  82. Gouras P (1968), Identification of cone mechanisms in monkey ganglion cells. J Physiol, 199(3): p. 533–47.

    Google Scholar 

  83. Guillery RW, Sherman SM (2002), Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron, 33(2): p. 163–75.

    Google Scholar 

  84. Gur M, Kagan I, Snodderly DM (2005), Orientation and direction selectivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions. Cereb Cortex, 15(8): p. 1207–21.

    Google Scholar 

  85. Hendrickson AE, Wilson JR, Ogren MP (1978), The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol, 182(1): p. 123–36.

    Google Scholar 

  86. Hendry SH, Reid RC (2000), The koniocellular pathway in primate vision. AnnuRev Neurosci, 23: p. 127–53.

    Google Scholar 

  87. Hendry SH, Yoshioka T (1994), A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science, 264(5158): p. 575–7.

    Google Scholar 

  88. Hubel DH (1995), Eye, brain and vision.2ed. New York: Scientific American Library.242.

    Google Scholar 

  89. Hubel DH, Wiesel TN (1959), Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 148: p. 574–91.

    Google Scholar 

  90. Hubel DH, Wiesel TN (1961), Integrative action in the cat’s lateral geniculate body. J Physiol, 155: p. 385–98.

    Google Scholar 

  91. Hubel DH, Wiesel TN (1962), Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 160: p. 106–54.

    Google Scholar 

  92. Hubel DH, Wiesel TN (1965), Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol, 28: p. 229–89.

    Google Scholar 

  93. Hubel DH, Wiesel TN (1968), Receptive fields and functional architecture of monkey striate cortex. J Physiol, 195(1): p. 215–43.

    Google Scholar 

  94. Hubel DH, Wiesel TN (1972), Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol, 146(4): p. 421–50.

    Google Scholar 

  95. Hubel DH, Wiesel TN (1974), Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol, 158(3): p. 267–93.

    Google Scholar 

  96. Hupe JM, James AC, Payne BR, et al. (1998), Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695): p. 784–7.

    Google Scholar 

  97. Jones HE, Grieve KL, Wang W, Sillito AM (2001), Surround suppression in primate V1. J Neurophysiol, 86(4): p. 2011–28.

    Google Scholar 

  98. Kandel ER, Schwartz JH, Jessell TM, eds (2000). Principles of neural science. 4th ed. McGraw Hill: New York.

    Google Scholar 

  99. Kaneko A (1970), Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol, 207(3): p. 623–33.

    Google Scholar 

  100. Kapadia MK, Westheimer G, Gilbert CD (1999),Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA, 96(21): p. 12073–8.

    Google Scholar 

  101. Kaplan E, Shapley RM (1982), X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol, 330: p. 125–43.

    Google Scholar 

  102. Kaplan E, Shapley RM (1986), The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA, 83(8): p. 2755–7.

    Google Scholar 

  103. Knierim JJ, van Essen DC (1992), Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol, 67(4): p. 961–80.

    Google Scholar 

  104. Kolb H, Dekorver L (1991), Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J Comp Neurol, 303(4): p. 617–36.

    Google Scholar 

  105. Kolb H, Linberg KA, Fisher SK (1992), Neurons of the human retina: a Golgi study. J Comp Neurol, 318(2): p. 147–87.

    Google Scholar 

  106. Kolb H, Marshak D (2003), The midget pathways of the primate retina.Doc Ophthalmol, 106(1): p. 67–81.

    Google Scholar 

  107. Lachica EA, Beck PD, Casagrande VA (1992), Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci USA, 89(8): p. 3566–70.

    Google Scholar 

  108. Laubrock J, Engbert R, Kliegl R (2008), Fixational eye movements predict the perceived direction of ambiguous apparent motion. J Vis, 8(14): p. 1–17.

    Google Scholar 

  109. Leventhal AG, Rodieck RW, Dreher B (1981), Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science, 213(4512): p. 1139–42.

    Google Scholar 

  110. Levitt JB, Lund JS (2002), The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci, 19(4): p. 439–52.

    Google Scholar 

  111. Livingstone M, Hubel D (1988), Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853): p. 740–9.

    Google Scholar 

  112. Livingstone MS, Hubel DH (1982), Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc Natl Acad Sci USA, 79(19): p. 6098–101.

    Google Scholar 

  113. Livingstone MS, Hubel DH (1984), Anatomy and physiology of a color system in the primate visual cortex. J Neurosci, 4(1): p. 309–56.

    Google Scholar 

  114. Lorente de Nó R (1949), Cerebral cortex: architecture, intracortical connections, motor projections, in Physiology of the nervous system, Fulton JF, Editor. Oxford University Press: Oxford. p. 288–330.

    Google Scholar 

  115. Lowel S, Schmidt KE, Kim DS, et al. (1998), The layout of orientation and ocular dominance domains in area 17 of strabismic cats. Eur J Neurosci, 10(8): p. 2629–43.

    Google Scholar 

  116. Lund JS (1973), Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol, 147(4): p. 455–96.

    Google Scholar 

  117. Lund JS, Boothe RG, Lund RD (1977), Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. J Comp Neurol, 176(2): p. 149–88.

    Google Scholar 

  118. Lund JS, Lund RD, Hendrickson AE, et al. (1975), The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol, 164(3): p. 287–303.

    Google Scholar 

  119. Lund JS, Wu CQ (1997), Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1-3A. J Comp Neurol, 384(1): p. 109–26.

    Google Scholar 

  120. Macknik SL (2006), Visual masking approaches to visual awareness. Prog Brain Res, 155: p. 177–215.

    Google Scholar 

  121. Macknik SL, Haglund MM (1999), Optical images of visible and invisible percepts in the primary visual cortex of primates. Proc Natl Acad Sci USA, 96(26): p. 15208–10.

    Google Scholar 

  122. Macknik SL, Livingstone MS (1998), Neuronal correlates of visibility and invisibility in the primate visual system. Nat Neurosci, 1(2): p. 144–9.

    Google Scholar 

  123. Macknik SL, Martinez-Conde S (2004), The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges. Neurocomputing, 58–60: p. 775–82.

    Google Scholar 

  124. Macknik SL, Martinez-Conde S (2007), The role of feedback in visual masking and visual processing. Adv Cogn Psychol, 3: p. 125–52.

    Google Scholar 

  125. Macknik SL, Martinez-Conde S (2009), The role of feedback in visual attention and awareness, in The Cognitive Neurosciences, 4th edition, Gazzaniga MS, Editor. MIT Press: Cambridege, MA, p. 1165–75.

    Google Scholar 

  126. Macknik SL, Martinez-Conde S, Haglund MM (2000), The role of spatiotemporal edges in visibility and visual masking. Proc Natl Acad Sci USA, 97(13): p. 7556–60.

    Google Scholar 

  127. Macknik SL, Martinez-Conde S (2009), Encyclopedia of Perception, Ed. E. Bruce Goldstein, Sage Press, 522–24.

    Google Scholar 

  128. MacNeil MA, Masland RH (1998), Extreme diversity among amacrine cells: implications for function. Neuron, 20(5): p. 971–82.

    Google Scholar 

  129. Maguire WM, Baizer JS (1984), Visuotopic organization of the prelunate gyrus in rhesus monkey. J Neurosci, 4(7): p. 1690–704.

    Google Scholar 

  130. Malach R, Amir Y, Harel M, Grinvald A (1993), Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA, 90(22): p. 10469–73.

    Google Scholar 

  131. Marks WB, Dobelle WH, Macnichol EF, Jr. (1964), Visual pigments of single primate cones. Science, 143: p. 1181–3.

    Google Scholar 

  132. Marr D, Hildreth E (1980), Theory of edge detection. Proc R Soc Lond Series B, 207: p. 187–217.

    Google Scholar 

  133. Martinez-Conde S, Cudeiro J, Grieve KL, et al. (1999), Effects of feedback projections from area 18 layers 2/3 to area 17 layers 2/3 in the cat visual cortex. J Neurophysiol, 82(5): p. 2667–75.

    Google Scholar 

  134. Martinez-Conde S, Macknik SL (2001). Junctions are the most salient visual features in the early visual system. in Society for Neuroscience 31st Annual Meeting. SanDiego, CA.

    Google Scholar 

  135. Martinez-Conde S, Macknik SL (2007), Windows on the mind. Sci Am, 297(2): p. 56–63.

    Google Scholar 

  136. Martinez-Conde S, Macknik SL (2008), Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception. J Vis, 8(14): p. 1–16.

    Google Scholar 

  137. Martinez-Conde S, Macknik SL, Hubel DH (2000), Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neuroscience, 3(3): p. 251–8.

    Google Scholar 

  138. Martinez-Conde S, Macknik SL, Hubel DH (2002), The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proc Natl Acad Sci USA, 99(21): p. 13920–5.

    Google Scholar 

  139. Martinez-Conde S, Macknik SL, Hubel DH (2004), The role of fixational eye movements in visual perception. Nat Rev Neurosci, 5: p. 229–40.

    Google Scholar 

  140. Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA (2006), Microsaccades counteract visual fading during fixation. Neuron, 49(2): p. 297–305.

    Google Scholar 

  141. Martinez-Conde S, Macknik SL, Troncoso XG, Hubel DH (2009), Microsaccades: a neurophysiological analysis. Trends Neurosci, 32(9): p. 463–75.

    Google Scholar 

  142. Martinez LM, Alonso JM (2001), Construction of complex receptive fields in cat primary visual cortex. Neuron, 32: p. 515–25.

    Google Scholar 

  143. Martinez LM, Wang Q, Reid RC, et al. (2005), Receptive field structure varies with layer in the primary visual cortex. Nat Neurosci, 8(3): p. 372–9.

    Google Scholar 

  144. Masland RH, Ames A, 3rd (1976), Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol, 39(6): p. 1220–35.

    Google Scholar 

  145. Maunsell JH, Newsome WT (1987), Visual processing in monkey extrastriate cortex. Annu Rev Neurosci, 10: p. 363–401.

    Google Scholar 

  146. McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991), Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol, 305(3): p. 370–92.

    Google Scholar 

  147. Meadows JC (1974), The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry, 37(5): p. 489–501.

    Google Scholar 

  148. Meadows JC (1974), Disturbed perception of colours associated with localized cerebral lesions. Brain, 97(4): p. 615–32.

    Google Scholar 

  149. Merigan WH, Maunsell JH (1993), How parallel are the primate visual pathways? Annu Rev Neurosci, 16: p. 369–402.

    Google Scholar 

  150. Miller RF, Slaughter MM (1986), Excitatory amino acid receptors of the retina: diversity and subtype and conductive mechanisms. TINS, 9: p. 211–3.

    Google Scholar 

  151. Mishkin M, Ungerleider LG (1983), Object vision and spatial vision: two cortical pathways. Trendes Neurosci, 6: p. 414–7.

    Google Scholar 

  152. Mollon JD, Bowmaker JK (1992), The spatial arrangement of cones in the primate fovea. Nature, 360(6405): p. 677–9.

    Google Scholar 

  153. Mountcastle VB (1957), Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol, 20(4): p. 408–34.

    Google Scholar 

  154. Mountcastle VB, Berman AL, Davies PW (1955), Topographic organization and modality representation in first somatic area of cat’s cerebral cortex by method of singleunit analysis. Am J Physiol, 183: p. 646.

    Google Scholar 

  155. Movshon JA, Thompson ID, Tolhurst DJ (1978), Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol, 283: p. 53–77.

    Google Scholar 

  156. Muller JF, Dacheux RF (1997), Alpha ganglion cells of the rabbit retina lose antagonistic surround responsesunder dark adaptation. Vis Neurosci, 14(2): p. 395–401.

    Google Scholar 

  157. Murphy PC, Duckett SG, Sillito AM (1999), Feedback connections to the lateral geniculate nucleus and cortical response properties. Science, 286(5444): p. 1552–4.

    Google Scholar 

  158. Murphy PC, Sillito AM (1987), Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature, 329(6141): p. 727–9.

    Google Scholar 

  159. Nawy S, Copenhagen DR (1987), Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature, 325(6099): p. 56–8.

    Google Scholar 

  160. Nelson R, Famiglietti EV, Jr., Kolb H (1978), Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol, 41(2): p. 472–83.

    Google Scholar 

  161. Nelson R, Kolb H (1983), Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res, 23(10): p. 1183–95.

    Google Scholar 

  162. Obermayer K, Blasdel GG (1993), Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci, 13(10): p. 4114–29.

    Google Scholar 

  163. Olavarria JF, Van Essen DC (1997), The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb Cortex, 7(5): p. 395–404.

    Google Scholar 

  164. Østerberg G (1935), Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica, 6: p. 1–103.

    Google Scholar 

  165. Pack CC, Livingstone MS, Duffy KR, Born RT (2003), End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron, 39(4): p. 671–80.

    Google Scholar 

  166. Pasupathy A, Connor CE (1999), Responses to contour features in macaque area V4. J Neurophysiol, 82(5): p. 2490–502.

    Google Scholar 

  167. Pearlman AL, Birch J, Meadows JC (1979), Cerebral color blindness: an acquired defect in hue discrimination. Ann Neurol, 5(3): p. 253–61.

    Google Scholar 

  168. Peichl L, Wassle H (1983), The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. J Physiol, 341: p. 309–24.

    Google Scholar 

  169. Perkel DJ, Bullier J, Kennedy H (1986), Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J Comp Neurol, 253(3): p. 374–402.

    Google Scholar 

  170. Perry VH, Cowey A (1981), The morphological correlates of X- and Y-like retinal ganglion cells in the retina of monkeys. Exp Brain Res, 43(2): p. 226–8.

    Google Scholar 

  171. Perry VH, Oehler R, Cowey A (1984), Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12(4): p. 1101–23.

    Google Scholar 

  172. Poggio GF, Doty RW, Jr., Talbot WH (1977), Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. J Neurophysiol, 40(6): p. 1369–91.

    Google Scholar 

  173. Polyak S (1941), The retina. Chicago: University of Chicago Press.

    Google Scholar 

  174. Powell TP, Mountcastle VB (1959), Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a singleunit analysis with cytoarchitecture. Bull Johns Hopkins Hosp, 105: p. 133–62.

    Google Scholar 

  175. Ramón y Cajal S (1893), La rétine des vertébrés. Cellule, 9: p. 117–257.

    Google Scholar 

  176. Ramón y Cajal, S (1900), Structure of the Mammalian Retina. Madrid.

    Google Scholar 

  177. Rao RPN, Olshausen BA, Lewicki MS (2002), Probabilistic models of the brain: perception and neural function. Cambridge, MA: MIT Press.

    Google Scholar 

  178. Ratcliff G, Davies-Jones GA (1972), Defective visual localization in focal brain wounds. Brain, 95(1): p. 49–60.

    Google Scholar 

  179. Ratliff F (1965), Mach bands: Quantitative studies on neural networks in the retina. San Francisco: Holden-Day, Inc.

    Google Scholar 

  180. Reid RC, Alonso JM (1995), Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378(6554): p. 281–4.

    Google Scholar 

  181. Ringach DL (2002), Orientation selectivity in macaque V1: diversity and laminar dependence. J Neurosci, 22(13): p. 5639–51.

    Google Scholar 

  182. Ringach DL (2002), Spatial structure and symmetry of simple cell receptive fields in macaque primary visual cortex. J Neurophysiol, 88: p. 455–463.

    Google Scholar 

  183. Rockland KS, Lund JS (1983), Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol, 216(3): p. 303–18.

    Google Scholar 

  184. Rockland KS, Saleem KS, Tanaka K (1994),Divergent feedback connections from areas V4 and TEO in the macaque. Vis Neurosci, 11(3): p. 579–600.

    Google Scholar 

  185. Rockland KS, Virga A (1989), Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: a studyusing immunohistochemistry of anterogradely transported Phaseolus vulgaris-leucoagglutinin. J Comp Neurol, 285(1): p. 54–72.

    Google Scholar 

  186. Rodieck RW (1998), The first steps in seeing. Sunderland, Massachusetts: Sinauer Associates. 562.

    Google Scholar 

  187. Roorda A, Williams DR (1999), The arrangement of the three cone classes in the living human eye. Nature, 397(6719): p. 520–2.

    Google Scholar 

  188. Sceniak MP, Hawken MJ, Shapley R (2001), Visual spatial characterization of macaque V1 neurons. J Neurophysiol, 85(5): p. 1873–87.

    Google Scholar 

  189. Schiller PH, Malpeli JG (1978), Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol, 41(3): p. 788–97.

    Google Scholar 

  190. Schultze M (1866), Zur Anatomieund Physiologie der Retina. Arch Mikrosk Anat Entwicklungsmech, 2: p. 165–286.

    Google Scholar 

  191. Shapley R, Hawken M, Ringach DL (2003), Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron, 38(5): p. 689–99.

    Google Scholar 

  192. Shapley R, Perry JS (1986), Cat and monkey retinal ganglion cells and their visual functional roles. Trendes Neurosci, 9: p. 229–35.

    Google Scholar 

  193. Sherman SM, Guillery RW (1998), On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA, 95(12): p. 7121–6.

    Google Scholar 

  194. Sherman SM, Guillery RW (2001), Exploring the thalamus. SanDiego: Academic Press.

    Google Scholar 

  195. Shipp S, Zeki S (1985), Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature, 315(6017): p. 322–5.

    Google Scholar 

  196. Shipp S, Zeki S (1989), The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci, 1(4): p. 309–32.

    Google Scholar 

  197. Sincich LC, Horton JC (2005), The circuitry of V1 and V2: integration of color, form, and motion. Annu Rev Neurosci, 28: p. 303–26.

    Google Scholar 

  198. Skavenski AA, Hansen RM, Steinman RM, Winterson BJ (1979), Quality of retinal image stabilization during small natural and artificial body rotations in man. Vision Res, 19(6): p. 675–83.

    Google Scholar 

  199. Slaughter MM, Miller RF (1981), 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science, 211(4478): p. 182–5.

    Google Scholar 

  200. Slaughter MM, Miller RF (1983), An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science, 219(4589): p. 1230–2.

    Google Scholar 

  201. Steriade M, Jones EG, McCormick DA, eds (1997). Thalamus. Elsevier: New York.

    Google Scholar 

  202. Stone J, Dreher B, Leventhal A (1979), Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res, 180(3): p. 345–94.

    Google Scholar 

  203. Suzuki W, Saleem KS, Tanaka K (2000),Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque. J Comp Neurol, 422(2): p. 206–28.

    Google Scholar 

  204. Tomita T (1965), Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol, 30: p. 559–66.

    Google Scholar 

  205. Trifonov YA (1968), Study of synaptic transmission between the photoreceptor and the horizontal cellusing electrical stimulation of the retina. Biofizika, 10: p. 673–80.

    Google Scholar 

  206. Troncoso XG, Macknik SL, Martinez-Conde S (2005), Novel visual illusions related to Vasarely’s ‘nested squares’ show that corner salience varies with corner angle. Perception, 34(4): p. 409–20.

    Google Scholar 

  207. Troncoso XG, Macknik SL, Martinez-Conde S (2008), Microsaccades counteract perceptual filling-in. J Vis, 8(14): p. 1–9.

    Google Scholar 

  208. Troncoso XG, Macknik SL, Martinez-Conde S (2009), Corner salience varies linearly with corner angle during flicker-augmented contrast: a general principle of corner perception based on Vasarely’s artworks. Spat Vis, 22(3): p. 211–24.

    Google Scholar 

  209. Troncoso XG, Macknik SL, Otero-Millan J, Martinez-Conde S (2008), Microsaccades drive illusory motion in the Enigma illusion. Proc Natl Acad Sci USA, 105(41): p. 16033–8.

    Google Scholar 

  210. Troncoso XG, Tse PU, Macknik SL, et al. (2007), BOLD activation varies parametrically with corner angle throughout human retinotopic cortex. Perception, 36(6): p. 808–20.

    Google Scholar 

  211. Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990), Functional organization of primate visual cortex revealed by high resolution optical imaging. Science, 249(4967): p. 417–20.

    Google Scholar 

  212. Ts’o DY, Gilbert CD, Wiesel TN (1986), Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci, 6(4): p. 1160–70.

    Google Scholar 

  213. Ungerleider LG, Desimone R (1986), Cortical connections of visual area MT in the macaque. J Comp Neurol, 248(2): p. 190–222.

    Google Scholar 

  214. Ungerleider LG, Desimone R (1986), Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. J Comp Neurol, 248(2): p. 147–63.

    Google Scholar 

  215. Ungerleider LG, Mishkin M (1982), Two cortical visual systems, in Analysis of visual behavior, Ingle DG, Goodale MA, Mansfield JQ, Editors. MIT Press: Cambridge, MA. p. 549–86.

    Google Scholar 

  216. Usrey WM, Alonso JM, Reid RC (2000), Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci, 20(14): p. 5461–7.

    Google Scholar 

  217. vanDam LC, van Ee R (2006), Retinal image shifts, but not eye movements per se, cause alternations in awareness during binocular rivalry. J Vis, 6(11): p. 1172–9.

    Google Scholar 

  218. Van Essen DC, Anderson CH, Felleman DJ (1992), Information processing in the primate visual system: an integrated systems perspective. Science, 255(5043): p. 419–23.

    Google Scholar 

  219. Van Essen DC, Gallant JL (1994), Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13(1): p. 1–10.

    Google Scholar 

  220. Van Essen DC, Zeki SM (1978), The topographic organization of rhesus monkey prestriate cortex. J Physiol, 277: p. 193–226.

    Google Scholar 

  221. Vasarely V (1970), Vasarely II. Plastic arts of the 20th century, ed. Joray M. Switzerland: Éditions duGriffon Neuchâtel.

    Google Scholar 

  222. Verweij J, Dacey DM, Peterson BB, Buck SL (1999), Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. Vision Res, 39(22): p. 3662–72.

    Google Scholar 

  223. Wässle H, Boycott BB (1991), Functional architecture of the mammalian retina. Physiol Rev, 71(2): p. 447–80.

    Google Scholar 

  224. Watanabe M, Rodieck RW (1989), Parasol and midget ganglion cells of the primate retina. J Comp Neurol, 289(3): p. 434–54.

    Google Scholar 

  225. Werblin FS, Dowling JE (1969), Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol, 32(3): p. 339–55.

    Google Scholar 

  226. Wiesel TN, Hubel DH, Lam DM (1974), Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res, 79(2): p. 273–9.

    Google Scholar 

  227. Wiser AK, Callaway EM (1996), Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex. J Neurosci, 16(8): p. 2724–39.

    Google Scholar 

  228. Yarbus AL (1967), Eye movements and vision. New York: Plenum Press.

    Google Scholar 

  229. Zeki SM (1974), Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J Physiol, 242(3): p. 827–41.

    Google Scholar 

  230. Zeki SM (1974), Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol, 236(3): p. 549–73.

    Google Scholar 

  231. Zeki SM (1978), Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274(5670): p. 423–8.

    Google Scholar 

  232. Zeki SM (1978), Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol, 277: p. 273–90.

    Google Scholar 

  233. Zhaoping L (2005), The primary visual cortex creates a bottom-up saliency map, in Neurobiology of Attention, Itti L, Rees G, Tsotsos JK, Editors. Elsevier: Oxford. p. 570–75.

    Google Scholar 

  234. Zihl J, von Cramon D, Mai N (1983), Selective disturbance of movement vision after bilateral brain damage. Brain, 106 (Pt2): p. 313–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Martinez-Conde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Troncoso, X.G., Macknik, S.L., Martinez-Conde, S. (2011). Vision’s First Steps: Anatomy, Physiology, and Perception in the Retina, Lateral Geniculate Nucleus, and Early Visual Cortical Areas. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics