Skip to main content

Synthetic Chromophores and Neural Stimulation of the Visual System

  • Chapter
  • First Online:
Visual Prosthetics
  • 1474 Accesses

Abstract

This chapter presents an overview of optical stimulation of neural cells by synthetic chromophores and their potential use in the field of artificial sight. The chromophores and techniques that are discussed include azo chromophores, photo release of caged neurotransmitters, pore blockers and photoisomerization, the channelrhodopsins, melanopsin, and the Photosystem I reaction center of green plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR:

All-trans retinal

ChR:

Channel rhodopsin

Cy5:

Red-emitting cyanine-based fluorescent dye

DIC:

Differential interference contrast microscopy

FITC:

Fluorescein isothiocyanate

PSI:

Photosystem I reaction center

UV:

Ultraviolet light

References

  1. Balasubramanian D, Subramani S, Kumar C (1975), Modification of a model membrane structure by embedded photochrome. Nature, 254(5497): p. 252–4.

    Article  Google Scholar 

  2. Banghart M, Borges K, Isacoff E, et al. (2004), Light-activated ion channels for remote ­control of neuronal firing. Nat Neurosci, 7(12): p. 1381–6.

    Article  Google Scholar 

  3. Boyden ES, Zhang F, Bamberg E, et al. (2005), Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9): p. 1263–8.

    Article  Google Scholar 

  4. Callaway EM, Katz LC (1993), Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA, 90(16): p. 7661–5.

    Article  Google Scholar 

  5. Chitnis PR (2001), Photosystem I: function and physiology. Annu Rev Plant Physiol Plant Mol Biol, 52: p. 593–626.

    Article  Google Scholar 

  6. Deal WJ, Erlanger BF, Nachmansohn D (1969), Photoregulation of biological activity by photochromic reagents. 3. Photoregulation of bioelectricity by acetylcholine receptor inhibitors. Proc Natl Acad Sci USA, 64(4): p. 1230–4.

    Article  Google Scholar 

  7. Dias AR, Dapiedade MEM, Simoes JAM, et al. (1992), Enthalpies of formation of cis-azobenzene and trans-azobenzene. J Chem Thermodyn, 24(4): p. 439–47.

    Article  Google Scholar 

  8. Evans BR, O’Neill HM, Hutchens SA, et al. (2004), Enhanced photocatalytic hydrogen evolution by covalent attachment of plastocyanin to photosystem I. Nano Lett, 4(10): p. 1815–9.

    Article  Google Scholar 

  9. Fork RL (1971), Laser stimulation of nerve cells in aplysia. Science, 171(3974): p. 907–8.

    Article  Google Scholar 

  10. Greenbaum E, Humayun MS, Kuritz T, et al. (2001), Application of photosynthesis to artificial sight. In: IEEE Engineering in Medicine and Biology. Istanbul, Turkey: IEEE.

    Google Scholar 

  11. Hirase H, Nikolenko V, Goldberg JH, Yuste R (2002), Multiphoton stimulation of neurons. J Neurobiol, 51(3): p. 237–47.

    Article  Google Scholar 

  12. Humayun MS, Weiland JD, Chader G, Greenbaum E (2007), Artificial sight: basic research, biomedical engineering, and clinical advances. New York: Springer.

    Google Scholar 

  13. Ishizuka T, Kakuda M, Araki R, Yawo H (2006), Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res, 54(2): p. 85–94.

    Article  Google Scholar 

  14. Kuritz T, Lee I, Owens ET, et al. (2005), Molecular photovoltaics and the photoactivation of mammalian cells. IEEE Trans Nanobioscience, 4(2): p. 196–200.

    Article  Google Scholar 

  15. Lee I, Lee JW, Stubna A, Greenbaum E (2000), Measurement of electrostatic potentials above oriented single photosynthetic reaction centers. J Phys Chem B, 104(11): p. 2439–43.

    Article  Google Scholar 

  16. Lee WS, Ueno A (2001), Photocontrol of the catalytic activity of a beta-cyclodextrin bearing azobenzene and histidine moieties as a pendant group. Macromol Rapid Commun, 22(6): p. 448–50.

    Article  Google Scholar 

  17. Lester HA, Krouse ME, Nass MM, et al. (1980), Covalently bound photoisomerizable agonist – comparison with reversibly bound agonists at electrophorus electroplaques. J Gen Physiol, 75(2): p. 207–32.

    Article  Google Scholar 

  18. Lester HA, Nerbonne JM (1982), Physiological and pharmacological manipulations with light-flashes. Annu Rev Biophys Bioeng, 11: p. 151–75.

    Article  Google Scholar 

  19. Li X, Gutierrez DV, Hanson MG, et al. (2005), Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin. Proc Natl Acad Sci USA, 102(49): p. 17816–21.

    Article  Google Scholar 

  20. Melyan Z, Tarttelin EE, Bellingham J, et al. (2005), Addition of human melanopsin renders mammalian cells photoresponsive. Nature, 433(7027): p. 741–5.

    Article  Google Scholar 

  21. Nagel G, Brauner M, Liewald JF, et al. (2005), Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol, 15(24): p. 2279–84.

    Article  Google Scholar 

  22. Nagel G, Ollig D, Fuhrmann M, et al. (2002), Channelrhodopsin-1: a light-gated proton channel in green algae. Science, 296(5577): p. 2395–8.

    Article  Google Scholar 

  23. Nagel G, Szellas T, Huhn W, et al. (2003), Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA, 100(24): p. 13940–5.

    Article  Google Scholar 

  24. Norrish RGW, Porter G (1949) Chemical Reactions produced by very high light intensities. Nature, 164: p. 658

    Article  Google Scholar 

  25. Pennisi CP, Greenbaum E, Yoshida K (2008), Spatial distribution of the electric potential from Photosystem I reaction centers in lipid vesicles. IEEE Trans Nanobiosci, 7(2): p. 164–71.

    Article  Google Scholar 

  26. Pennisi CP, Greenbaum E, Yoshida K (2010), Analysis of light-induced transmembrane ion gradients and membrane potential in Photosystem I proteoliposomes. Biophys Chem, 146: p. 13–24.

    Article  Google Scholar 

  27. Pennisi CP, Jensen PE, Zachar V, et al. (2009), Incorporation of photosynthetic reaction centers in the membrane of human cells: toward a new tool for optical control of cell activity. Cell Mol Bioeng, 2(1): p. 156–65.

    Article  Google Scholar 

  28. Pieroni O, Houben JL, Fissi A, Costantino P (1980), Reversible conformational-changes induced by light in poly(l-glutamic acid) with photochromic side-chains. J Am Chem Soc, 102(18): p. 5913–5.

    Article  Google Scholar 

  29. Sisido M, Ishikawa Y, Itoh K, Tazuke S (1991), Helically arranged azobenzene chromophores along a polypeptide-chain. 1. synthesis and circular-dichroism. Macromolecules, 24(14): p. 3993–8.

    Google Scholar 

  30. Standaert RF, Park SB (2006), Abc amino acids: design, synthesis, and properties of new photoelastic amino acids. J Org Chem, 71(21): p. 7952–66.

    Article  Google Scholar 

  31. Stryer L (1995), Biochemistry, 4 ed. New York: W. H. Freeman and Company. p. 1064.

    Google Scholar 

  32. Volgraf M, Gorostiza P, Numano R, et al. (2006), Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol, 2(1): p. 47–52.

    Article  Google Scholar 

  33. Wang SS, Khiroug L, Augustine GJ (2000), Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci USA, 97(15): p. 8635–40.

    Article  Google Scholar 

  34. Wilcox M, Viola RW, Johnson KW, et al. (1990), Synthesis of photolabile precursors of amino-acid neurotransmitters. J Org Chem, 55(5): p. 1585–9.

    Article  Google Scholar 

  35. Willner I, Rubin S (1996), Control of the structure and functions of biomaterials by light. Angew Chem Int Ed Engl, 35(4): p. 367–85.

    Article  Google Scholar 

  36. Yager KG, Barrett CJ (2006), Novel photo-switching using azobenzene functional materials. J Photochem Photobiol A Chem, 182(3): p. 250–61.

    Article  Google Scholar 

  37. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003), Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA, 100(3): p. 1352–7.

    Article  Google Scholar 

  38. Zhang F, Wang LP, Boyden ES, Deisseroth K (2006), Channelrhodopsin-2 and optical control of excitable cells. Nat Methods, 3(10): p. 785–92.

    Article  Google Scholar 

  39. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008), Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 105(41): 16009–14.

    Article  Google Scholar 

  40. Partridge JC, Douglas RH (1995) Far-red sensitivity of dragon fish. Nature 375: p. 21–2.

    Article  Google Scholar 

  41. Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY, Hynninen PH (1998), Dragon fish see using chlorophyll. Nature, 393: p. 423–4.

    Article  Google Scholar 

  42. Washington I, Zhou J, Jockusch S, Turro NJ, Nakanishi K, Sparrow JR (2007), Chlorophyll derivatives as visual pigments for super vision in the red. Photochem Photobiol Sci, 7: p. 775–9.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks M. S. Humayun, J. D. Weiland, T. Kuritz, I. Lee, C. P. Pennisi, C. A. Sanders, B. R. Evans, and H. M. O’Neill for advice, support and discussions. This work was supported by the Office of Biological and Environmental Research, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Greenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Greenbaum, E., Evans, B.R. (2011). Synthetic Chromophores and Neural Stimulation of the Visual System. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics