Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 642))

Abstract

The backbone of the third filament system of the sarcomere is the huge titin molecule, spanning from the sarcomeric Z-disc to the M-line. Proteins in direct interaction and functionally integrated with titin, such as calpain 3 and telethonin, are part of the third filament system. The third filament system provides support to the contractile filament systems during development and mature states including mechanical properties and regulatory signaling functions. The first mutations in the third filament system causing human muscle disease were identified in calpain 3 in 1995, followed by telethonin and titin. In spite of some early ideas on what is going wrong in the muscle cells based on the defective proteins, the exact molecular pathomechanisms leading to muscle atrophy in patients with these disorders are still unknown. However, preparations for direct trials of gene therapy have already been launched, at least for calpainopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Labeit S, Gautel M, Lakey A et al. Towards a molecular understanding of titin. EMBO J 1992; 11:1711–1716.

    PubMed  CAS  Google Scholar 

  2. Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995; 270:293–296.

    Article  PubMed  CAS  Google Scholar 

  3. Freiburg A, Gautel M. A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 1996; 235:317–323.

    Article  PubMed  CAS  Google Scholar 

  4. Gautel M, Mues A, Young P. Control of sarcomeric, assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 38:97–137.

    Article  Google Scholar 

  5. Improta S, Politou AS, Pastore A. Immunoglobulin-like modules from titin I-band: Extensible components of muscle elasticity. Structure 1996; 4:323–337.

    Article  PubMed  CAS  Google Scholar 

  6. Kolmerer B, Olivieri N, Witt CC et al. Genomic organization of M line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 1996; 256:556–563.

    Article  PubMed  CAS  Google Scholar 

  7. Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin and associated structures. Am J Physiol Heart Circ Physiol 2006; 290(4):H1313–25.

    Article  PubMed  CAS  Google Scholar 

  8. Witt SH, Labeit D, Granzier H et al. Dimerization of the cardiac ankyrin protein CARP: Implications for MARP titin-based signaling. J Muscle Res Cell Motil 2006; 1:1–8.

    Google Scholar 

  9. Lange S, Xiang F, Yakovenko A et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005; 308:1599–1603.

    Article  PubMed  CAS  Google Scholar 

  10. Bang M-L, Centner T, Fornoff F et al. The complete gene sequence of titin, expression of an unusual 700-kDa titin isoform and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 2001; 89:1065–1072.

    Article  PubMed  CAS  Google Scholar 

  11. Gautel M, Goulding D, Bullard B et al. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 1996; 109:2747–2754.

    PubMed  CAS  Google Scholar 

  12. Sorimachi H, Freiburg A, Kolmerer B et al. Tissue-specific expression and a-actinin binding properties of the Z-disc titin: Implications for the nature of vertebrate Z-discs. J Mol Biol 1997; 270:688–695.

    Article  PubMed  CAS  Google Scholar 

  13. Trombitas K, Wu Y, Labeit S et al. Cardiac titin isoforms are expressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 2001; 285:H1793–1799.

    Google Scholar 

  14. Wu Y, Bell SP, Trombitas K et al. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 2002; 106:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  15. Granzier H, Wu Y, Siegfried L et al. Titin: Physiological function and role in cardiomyopathy and failure. Heart Fail Rev 2005; 10(3):211–223.

    Article  PubMed  Google Scholar 

  16. Lange S, Agarkova I, Perriard JC et al. The sarcomeric M-band during development and in disease. J Muscle Res Cell Motil 2006; 10:1–5.

    Google Scholar 

  17. Ojima K, Ono Y, Doi N et al. Myogenic state, sarcomere length and protease activity modulate localization of muscle-specific calpain. J Biochem 2007; E-publ.

    Google Scholar 

  18. Richard I, Broux O, Allamand V et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81:27–40.

    Article  PubMed  CAS  Google Scholar 

  19. Moreira ES, Wiltshire TJ, Faulkner G et al. Limb-girdle muscular dystrophy type 2G is caused by mutatiosn in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000; 24(2):163–166.

    Article  PubMed  CAS  Google Scholar 

  20. Gerull B, Gramlich M, Atherton J et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002; 30:201–204.

    Article  PubMed  CAS  Google Scholar 

  21. Itoh-Satoh M, Hayashi T, Nishi H et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 291:385–393.

    Article  PubMed  CAS  Google Scholar 

  22. Hackman P, Vihola A, Haravuori H et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002; 71:492–500.

    Article  PubMed  CAS  Google Scholar 

  23. Carmignac V, Salih MA, Quijano-Roy S et al. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol 2007; 61(4):340–351.

    Article  PubMed  CAS  Google Scholar 

  24. Satoh M, Takahashi M, Sakamoto T et al Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Bioch Biophys Res Commun 1999; 262:411–417.

    Article  CAS  Google Scholar 

  25. Seidman JG, Seidmann C. The genetics basis for cardiomyopathy: From mutation identification to manifestation paradigms. Cell 2001, 104:557–567.

    Article  PubMed  CAS  Google Scholar 

  26. Gerull B, Atherton J, Geupel A et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J Mol Med 2006; 84(6):478–483.

    Article  PubMed  CAS  Google Scholar 

  27. Matsumoto Y, Hayashi T, Inagaki N et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J Muscle Res Cell Motil 2006; 8:1–8.

    Google Scholar 

  28. Udd B, Kääriäinen H, Somer H: Muscular dystrophy with separate phenotypes in a large family. Muscle Nerve 1991; 14:1050–1058.

    Article  PubMed  CAS  Google Scholar 

  29. Udd B, Partanen J, Halonen P et al. Tibial muscular dystrophy—Late adult onset distal myopathy in 66 Finnish patients. Arch Neurol 1993; 50:604–608.

    PubMed  CAS  Google Scholar 

  30. Udd B, Vihola A, Sarparanta J et al. Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology 2005; 64:636–642.

    PubMed  CAS  Google Scholar 

  31. de Seze J et al. The first European tibial muscular dystrophy family outside the Finnish population. Neurology 1998;51:1746–1748.

    PubMed  Google Scholar 

  32. Van den Bergh P, Bouquiaux O, Verellen C et al. Tibial muscular dystrophy in a Belgian family. Annal Neurol 2003; 54:248–251.

    Article  PubMed  Google Scholar 

  33. Udd B et al. Imaging methods reveal unexpected patchy lesions in late onset distal myopathy. Neuromusc Disord 1991; 1:271–280.

    Google Scholar 

  34. Udd B et al. Nonvacuolar myopathy in a large family with both late adult onset distal myopathy and limb-girdle type muscular dystrophy. J Neurol Sci 1992; 113:214–221.

    Article  PubMed  CAS  Google Scholar 

  35. Haravuori H et al. (1998). Assignment of the tibial muscular dystrophy (TMD) locus on chromosome 2q31. Am J Hum Genet 62:620–626.

    Article  PubMed  CAS  Google Scholar 

  36. Udd B et al. Tibial muscular dystrophy—From clinical description to linkage on chromosome 2q31. Neuromusc Disord 1998; 8:327–332.

    Article  PubMed  CAS  Google Scholar 

  37. Sorimachi H, Kinbara K, Kimura S et al. Muscle-specific Calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 1995; 270:31158–31162.

    Article  PubMed  CAS  Google Scholar 

  38. Haravuori H et al. Secondary calpain3 deficiency in 2q linked muscular dystrophy—Titin is the candidate gene. Neurology 2001; 56:869–877.

    PubMed  CAS  Google Scholar 

  39. Houmeida A, Holt J, Tskhovrebova L et al. Studies of the interaction between titin and myosin. J Cell Biol 1995; 131:1471–1481.

    Article  PubMed  CAS  Google Scholar 

  40. Meredith C, Herrmann R, Parry C et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause Laing early-onset distal myopathy (MPD1). Am J Hum Genet 2004; 75:703–708.

    Article  PubMed  CAS  Google Scholar 

  41. Beatham J, Gehmlich K, van de Ven P et al. Constitutive upregulations in KY deficient muscles suggest early titin involvement in the mechanism of pathogenesis. Neuro musc Disord 2006; 16:437–445.

    Article  Google Scholar 

  42. Zastrow MS, Flaherty DB, Benian GM et al. Nuclear titin interacts with A-and B-type lamins in vitro and in vivo. J Cell Sci 2006; 119:239–49.

    Article  PubMed  CAS  Google Scholar 

  43. Edstrom L, Thornell L, Albo J et al. Myopathy with respiratory failure and typical myofibrillar lesions. J Neurol Sci 1990; 96:211–128.

    Article  PubMed  CAS  Google Scholar 

  44. Nicolao P, Xiang F Gunnarsson L et al. Autosomal dominant myopathy with proximal weakness and early respiratory muscle involvement maps to chromosome 2q. Am J Hum Genet 1999; 64:788–792.

    Article  PubMed  CAS  Google Scholar 

  45. Xiang F, Nicolao P, Chapon F et al. A second locus for autosomal dominant myopathy with proximal muscle weakness and early respiratory muscle involvement: A likely chromosomal locus on 2q21. Neuromuscul Disord 1999; 9(5):308–312.

    Article  PubMed  CAS  Google Scholar 

  46. Mayans O, van der Ven P, Wilm M et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 1998; 395:863–869.

    Article  PubMed  CAS  Google Scholar 

  47. Amodeo P, Castiglione Morelli M, Strazzullo G et al. Kinase recognition by calmodulin: Modeling the interaction with the autoinhibitory region of human cardiac titin kinase. J Mol Biol 2001; 306:81–95.

    Article  PubMed  CAS  Google Scholar 

  48. Gomes MD, Lecker SH, Jagoe RT et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci 2001; 98(25):14440–14445.

    Article  PubMed  CAS  Google Scholar 

  49. Sotiropoulos A, Gineitis D, Copeland J et al. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 1999; 98:159–169.

    Article  PubMed  CAS  Google Scholar 

  50. Sadoshima J and Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of an autocrine/paracrine mechanism. EMBO J 1993; 12:1681–1692.

    PubMed  CAS  Google Scholar 

  51. Carson J, Schwartz R, Booth F. SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. Am J Physiol 1996; 270:1624–1633.

    Google Scholar 

  52. Salih MA, Al Rayess M, Cutshall S et al. A novel form of familial congenital muscular dystrophy in two adolescents. Neuropediatrics 1998; 29:289–293.

    Article  PubMed  CAS  Google Scholar 

  53. Taveau M, Bourg N, Sillon G et al. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 2003; 23:9127–9135.

    Article  PubMed  CAS  Google Scholar 

  54. Diaz BG, Moldoveanu T, Kuiper MJ et al. Insertion sequence 1 of muscle-specific calpain, p94, acts as an internal propeptide. J Biol Chem 2004; 279:27656–27666.

    Article  PubMed  CAS  Google Scholar 

  55. Fanin M, Nascimbeni AC, Fulizio L et al. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 2005; 15:218–224.

    Article  PubMed  Google Scholar 

  56. Fardeau M, Eymard B, Mignard C et al. Chromosome 15-linked limb-girdle muscular dystrophy: Clinical phenotypes in Reunion Island and French metropolitan communities. Neuromuscul Disord 1996; 6:447–453.

    Article  PubMed  CAS  Google Scholar 

  57. Anderson LV, Harrison RM, Pogue R et al. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul Disord 2000; 10:553–559.

    Article  PubMed  CAS  Google Scholar 

  58. Talim B, Ognibene A, Mattioli E et al. Normal calpain expression in genetically confirmed limb-girdle muscular dystrophy type 2A. Neurology 2001; 56:692–3.

    PubMed  CAS  Google Scholar 

  59. Fanin M, Nascimbeni AC, Fulizio L et al. Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. Am J Pathol 2003; 163:1929–1936.

    PubMed  CAS  Google Scholar 

  60. Jenne DE, Kley RA, Vorgerd M et al. Limb girdle muscular dystrophy in a sibling pair with a homozygous Ser606Leu mutation in the alternatively spliced IS2 region of calpain 3. Biol Chem 2005; 386:61–67.

    Article  PubMed  CAS  Google Scholar 

  61. Lanzillo R, Aurino S, Fanin M et al. Early onset calpainopathy with normal non-functional calpain 3 level. Dev Med Child Neurol 2006; 48:304–306.

    Article  PubMed  CAS  Google Scholar 

  62. Saenz A, Leturcq F, Cobo AM et al. LGMD2A: Genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain 2005; 128:732–742.

    Article  PubMed  CAS  Google Scholar 

  63. Milic A, Daniele N, Lochmuller H et al. A third of LGMD2A biopsies have normal calpain 3 proteolytic activity as determined by an in vitro assay. Neuromuscul Disord 2007; 17(2):148–156.

    Article  PubMed  Google Scholar 

  64. Krahn MBR, Pecheux C, Hammouda EH et al. Screening of the CAPN3 gene in patients with possible LGMD2A. Clin Genet 2006; 69(5):444–449.

    Article  PubMed  Google Scholar 

  65. Ono Y, Shimada H, Sorimachi H et al. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem 1998;273:17073–8.

    Article  PubMed  CAS  Google Scholar 

  66. Duguez S, Bartoli M, Richard I. Calpain 3: A key regulator of the sarcomere? FEBS J 2006; 273(15)3427–3436.

    Article  PubMed  CAS  Google Scholar 

  67. Cohen N, Kudryashova E, Kramerova I et al. Identification of putative in vivo substrates of calpain 3 by comparative proteomics of overexpressing transgenic and nontransgenic mice. Proteomics 2006; 6(22):6075–6084.

    Article  PubMed  CAS  Google Scholar 

  68. Richard I, Roudaut C, Marchand S et al. Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice. J Cell Biol 2000; 151(7):1583–1590.

    Article  PubMed  CAS  Google Scholar 

  69. Udd B and Griggs R. Distal myopathies. In: AG Engel, C Franzini-Armstrong (eds.) Myology 3rd edition. New York: McGraw-Hill, 2004; 1169–1185.

    Google Scholar 

  70. Pinotsis N, Petoukhov M, Lange S et al. Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C-terminus. J Struct Biol 2006; 155(2):239–250.

    Article  PubMed  CAS  Google Scholar 

  71. Matsumoto Y, Hayashi T, Inagaki N et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J Muscle Res Cell Motil 2005; 26(6–8):367–374.

    PubMed  CAS  Google Scholar 

  72. Bos JM, Poley RN, Ny M et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein and telethonin. Mol Genet Metab 2006; 88(1):78–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Udd, B. (2008). Third Filament Diseases. In: Laing, N.G. (eds) The Sarcomere and Skeletal Muscle Disease. Advances in Experimental Medicine and Biology, vol 642. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84847-1_9

Download citation

Publish with us

Policies and ethics