Skip to main content

Osteoinduction with Colloss®, Colloss® E, and GFm

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

COLLOSS®and COLLOSS® E are bone void fillers consisting of lyophilized type I collagen and non-collagenous proteins extracted with chaotropic solvents from acid demineralized bovine and equine bone, respectively. The protein extracts are precipitated and further purified by methods similar to those used for isolating bone morphogenetic proteins1. COLLOSS® achieved the same rate and percentage of new bone formation as autologous bone graft in a porcine anterior spinal fusion model2 and both COLLOSS® and COLLOSS® E were equal osteoinductive than autograft bone in a sheep cortical bone defect model3. This osteoinductive activity was thought to be most likely mediated by BMPs, because an earlier study had shown that COLLOSS® enclosed in titanium mesh and implanted subcutaneously in rats, induced bone formation4. In this study we used histology and histomorphometry to confirm those results and to better define the osteoinductive potency and the phenotypic diversity of ectopic skeletal tissues induced in weanling Long Evans rats by COLLOSS® and COLLOSS® E. Osteoinduction in response to those materials was compared with induction of bone in response to known amounts of a purified mixture of bovine bone BMPs, GFm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

6.8. References

  1. Urist MR. Bone Morphogenetic Protein Composition. patent 4,619,989. 1986.

    Google Scholar 

  2. Li H, Zou X, Woo C, Ding M, Lind M, Bunger C. Experimental anterior lumbar interbody fusion with an osteoinductive bovine bone collagen extract. Spine 2005; 30(8):890–896.

    Article  Google Scholar 

  3. Huffer WE, Benedict JJ, Turner AS, Laib. A., Briest A, Rettenmaier R. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac autografts. Biomaterials (submitted).

    Google Scholar 

  4. Walboomers XF, Jansen JA. Bone tissue induction, using a COLLOSS-filled titanium fiber meshscaffolding material. Biomaterials 2005; 26(23):4779–4785.

    Article  Google Scholar 

  5. Urist MR. Bone formation by autoinduction. Science 1965; 150:893–899.

    Article  Google Scholar 

  6. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW et al. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242(4885):1528–1534.

    Article  Google Scholar 

  7. Wozney JM. The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult. [Review] [44 refs]. European Journal of Oral Sciences 1998; 106 Suppl 1:160–166.

    Google Scholar 

  8. Hoffmann A, Weich HA, Gross G, Hillmann G. Perspectives in the biological function, the technical and therapeutic application of bone morphogenetic proteins. Appl Microbiol Biotechnol 2001; 57(3):294–308.

    Article  Google Scholar 

  9. Hogan LM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes & Development 10, 1580–1594. 1996. Ref Type: Generic

    Article  Google Scholar 

  10. Bahamonde ME, Lyons KM. BMP3: to be or not to be a BMP. J Bone Joint Surg Am 2001; 83-ASuppl 1(Pt 1):S56–S62.

    Google Scholar 

  11. Helm GA, Li JZ, Alden TD, Hudson SB, Beres EJ, Cunningham M et al. A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg 2001; 95(2):298–307.

    Article  Google Scholar 

  12. Wozney JM. Overview of bone morphogenetic proteins. Spine 2002; 27(16 Suppl 1):S2–S8.

    Article  Google Scholar 

  13. Poser JW, Benedict JJ. Intermedics Orthopedics/Denver Inc.Wheat Ridge C, editor. Osteoinducitve protein mixture and purification processes. patent 5290763. 1994.

    Google Scholar 

  14. Roethy W, Fiehn E, Suehiro K, Gu A, Yi GH, Shimizu J et al. A growth factor mixture that significantly enhances angiogenesis in vivo. J Pharmacol Exp Ther 2001; 299(2):494–500.

    Google Scholar 

  15. Seeherman H, Wozney J, Li R. Bone morphogenetic protein delivery systems. Spine 2002; 27(16 Suppl 1):S16–S23.

    Article  Google Scholar 

  16. Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiaton. Proc Natl Acad Sci USA 1981; 78:7599–7602.

    Article  Google Scholar 

  17. Sampath T.K., Reddi AH. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci USA 1983; 80(21):6591–6595.

    Article  Google Scholar 

  18. Bertagnoli R. Osteoinductive bone regeneration substance Colloss in spinal fusion. European Spine Journal 11, 189–190. 2002. Ref Type: Generic

    Google Scholar 

  19. Cornell CN. Initial clinical experience with the use of Collagraft as a bone graft substitute. Techniques Orth 1992; 7(2):55–63.

    Article  MathSciNet  Google Scholar 

  20. Feifel H. [Bone regeneration in Pro Osteon 500 alone and in combination with Colloss in the patellar gliding model of the rabbit]. Mund Kiefer Gesichtschir 2000; 4Suppl 2:S527–S530.

    Article  Google Scholar 

  21. Kloss FR, Schlegel KA, Felszeghy E, Falk S, Wiltfang J. [Applying an osteoinductive protein complex for regeneration of osseous defects]. Mund Kiefer Gesichtschir 2004; 8(1):12–17.

    Article  Google Scholar 

  22. Schlegel KA, Kloss FR, Kessler P, Schultze-Mosgau S, Nkenke E, Wiltfang J. Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 2003; 18(4):505–511.

    Google Scholar 

  23. Wiltfang J, Kloss FR, Kessler P, Nkenke E, Schultze-Mosgau S, Zimmermann R et al. Effects of plateletrich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 2004; 15(2):187–193.

    Article  Google Scholar 

  24. Huffer WE, Lewis M, Barnes T, Benedict JJ. Strategies for tailoring bone and connective tissue regeneration using bone protein. In: Davies JE, editor. Bone Engineering: An International Workshop. Toronto: University of Toronto Press, 2001: 408–420.

    Google Scholar 

  25. Sasano Y, Ohtani E, Narita K, Kagayama M, Murata M, Saito T et al. BMPs induce direct bone formation in ectopic sites independent of the endochondral ossification in vivo. Anat Rec 1993; 236(2):373–380.

    Article  Google Scholar 

  26. Stoeger T, Proetzel GE, Welzel H, Papadimitriou A, Dony C, Balling R et al. In situ gene expression analysis during BMP2-induced ectopic bone formation in mice shows simultaneous endochondral and intramembranous ossification. Growth Factors 2002; 20(4):197–210.

    Article  Google Scholar 

  27. Nakagawa T, Tagawa T. Ultrastructural study of direct bone formation induced by BMPs-collagen complex implanted into an ectopic site. Oral Dis 2000; 6(3):172–179.

    Article  Google Scholar 

  28. Aono A, Hazama M, Notoya K, Taketomi S, Yamasaki H, Tsukuda R et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem Biophys Res Commun 1995; 210(3):670–677.

    Article  Google Scholar 

  29. Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res 2002; 43(2–3):529–534.

    Article  Google Scholar 

  30. Takita H, Kikuchi M, Sato Y, Kuboki Y. Inhibition of BMP-induced ectopic bone formation by an antiangiogenic agent (epigallocatechin 3-gallate). Connect Tissue Res 2002; 43(2–3):520–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Huffer, W.E., Benedict, J.J., Rettenmaier, R., Briest, A. (2006). Osteoinduction with Colloss®, Colloss® E, and GFm. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics