Skip to main content

Chondrocyte Signaling and Artificial Matrices for Articular Cartilage Engineering

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

The proper functionality of healthy tissue requires maintenance. Even after tissue has undergone trauma, it attempts to repair itself. However, there are tissues within the body that are unable to completely regenerate when inflicted with severe stress, such as articular cartilage. The field of tissue engineering can alleviate this problem by providing cells, biological molecules and scaffolding materials to facilitate regeneration of healthy tissue. In order to achieve this task, fundamental mechanisms of cartilage tissue function needs to be understood. Cartilage is composed of components, such as cells, proteins and macromolecules, which all play a role in maintaining the well-being of the tissue. There has been considerable evidence that the interaction of chondrocytes with proteins and extracellular matrix play an important role in the homeostasis of cartilage. This is a continuously evolving area of study as biologists are intensely discovering new details of the cellular signaling pathways involved in the communication of chondrocytes. Recent studies have implicated that alterations in the signaling pathways of chondrocytes can lead to osteoarthritis, a degenerative condition of articular cartilage. We propose that the success of tissue engineers involves understanding the intricacy of chondrocytes signaling mechanisms in order to maintain their proper function while in contact with biomaterial scaffolds. To this end, we first discuss the basic biology of articular cartilage. Then we will explore the activation of signaling pathways that occur by chondrocytes due to the interaction with proteins (growth factors and cytokines) and extracellular matrix components (type II collagen, glycosaminoglycans and proteoglycans). Finally, we discuss the effects polymeric biomaterials may have on chondrocyte signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.9. References

  1. Poole, A.R. et al. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res, S26–33 (2001).

    Google Scholar 

  2. Ulrich-Vinther, M., Maloney, M.D., Schwarz, E.M., Rosier, R. & O’Keefe, R.J. Articular cartilage biology. J Am Acad Orthop Surg 11, 421–30 (2003).

    Google Scholar 

  3. Randolph, M.A., Anseth, K. & Yaremchuk, M.J. Tissue engineering of cartilage. Clin Plast Surg 30, 519–37 (2003).

    Article  Google Scholar 

  4. Newman, A.P. Articular cartilage repair. Am J Sports Med 26, 309–24 (1998).

    Google Scholar 

  5. Almarza, A.J. & Athanasiou, K.A. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng 32, 2–17 (2004).

    Article  Google Scholar 

  6. Woodfield, T.B., Bezemer, J.M., Pieper, J.S., van Blitterswijk, C.A. & Riesle, J. Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr 12, 209–36 (2002).

    Article  Google Scholar 

  7. Goessler, U.R., Hormann, K. & Riedel, F. Tissue engineering with chondrocytes and function of the extracellular matrix (Review). Int J Mol Med 13, 505–13 (2004).

    Google Scholar 

  8. Riesle, J., Hollander, A.P., Langer, R., Freed, L.E. & Vunjak-Novakovic, G. Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J Cell Biochem 71, 313–27 (1998).

    Article  Google Scholar 

  9. Temenoff, J.S. & Mikos, A.G. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431–40 (2000).

    Article  Google Scholar 

  10. Ishida, O., Tanaka, Y., Morimoto, I., Takigawa, M. & Eto, S. Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway. J Bone Miner Res 12, 1657–63 (1997).

    Article  Google Scholar 

  11. van der Kraan, P.M., Buma, P., van Kuppevelt, T. & van den Berg, W.B. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10, 631–7 (2002).

    Article  Google Scholar 

  12. Holland, T.A. & Mikos, A.G. Advances in drug delivery for articular cartilage. J Control Release 86, 1–14 (2003).

    Article  Google Scholar 

  13. Chubinskaya, S. & Kuettner, K.E. Regulation of osteogenic proteins by chondrocytes. Int J Biochem Cell Biol 35, 1323–40 (2003).

    Article  Google Scholar 

  14. Darling, E.M. & Athanasiou, K.A. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res, 1–11 (2005).

    Google Scholar 

  15. Hickey, D.G., Frenkel, S.R. & Di Cesare, P.E. Clinical applications of growth factors for articular cartilage repair. Am J Orthop 32, 70–6 (2003).

    Google Scholar 

  16. Hunter, T. Signaling—2000 and beyond. Cell 100, 113–27 (2000).

    Article  MathSciNet  Google Scholar 

  17. Martin, G.S. Cell signaling and cancer. Cancer Cell 4, 167–74 (2003).

    Article  Google Scholar 

  18. Dhanasekaran, N. Cell signaling: an overview. Oncogene 17, 1329–30 (1998).

    Article  Google Scholar 

  19. Brumley, L.M. & Marchase, R.B. Receptor synthesis and routing to the plasma membrane. Am J Med Sci 302, 238–43 (1991).

    Article  Google Scholar 

  20. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K.M. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793–805 (2001).

    Article  Google Scholar 

  21. Lotz, M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res, S108–15 (2001).

    Google Scholar 

  22. Hering, T.M. Regulation of chondrocyte gene expression. Front Biosci 4, D743–61 (1999).

    Article  Google Scholar 

  23. Lee, J.W., Qi, W.N. & Scully, S.P. The involvement of beta1 integrin in the modulation by collagen of chondrocyte-response to transforming growth factor-beta1. J Orthop Res 20, 66–75 (2002).

    Article  Google Scholar 

  24. Loeser, R.F. Integrins and cell signaling in chondrocytes. Biorheology 39, 119–24 (2002).

    Google Scholar 

  25. Loeser, R.F., Carlson, C.S. & McGee, M.P. Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp Cell Res 217, 248–57 (1995).

    Article  Google Scholar 

  26. Glowacki, J., Trepman, E. & Folkman, J. Cell shape and phenotypic expression in chondrocytes. Proc Soc Exp Biol Med 172, 93–8 (1983).

    Google Scholar 

  27. Salter, D.M., Hughes, D.E., Simpson, R. & Gardner, D.L. Integrin expression by human articular chondrocytes. Br J Rheumatol 31, 231–4 (1992).

    Article  Google Scholar 

  28. Enomoto, M., Leboy, P.S., Menko, A.S. & Boettiger, D. Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp Cell Res 205, 276–85 (1993).

    Article  Google Scholar 

  29. Kurtis, M.S. et al. Mechanisms of chondrocyte adhesion to cartilage: role of beta1-integrins, CD44, and annexin V. J Orthop Res 19, 1122–30 (2001).

    Article  Google Scholar 

  30. Cao, L. et al. beta-Integrin-collagen interaction reduces chondrocyte apoptosis. Matrix Biol 18, 343–55 (1999).

    Article  Google Scholar 

  31. Shakibaei, M., John, T., De Souza, P., Rahmanzadeh, R. & Merker, H.J. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342 Pt 3, 615–23 (1999).

    Article  Google Scholar 

  32. Curtis, A.J., Ng, C.K., Handley, C.J. & Robinson, H.C. Effect of insulin-like growth factor-I on the synthesis and distribution of link protein and hyaluronan in explant cultures of articular cartilage. Biochim Biophys Acta 1135, 309–17 (1992).

    Article  Google Scholar 

  33. Blunk, T. et al. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 8, 73–84 (2002).

    Article  Google Scholar 

  34. Bhakta, N.R., Garcia, A.M., Frank, E.H., Grodzinsky, A.J. & Morales, T.I. The insulin-like growth factors (IGFs) I and II bind to articular cartilage via the IGF-binding proteins. J Biol Chem 275, 5860–6 (2000).

    Article  Google Scholar 

  35. Wang, J., Elewaut, D., Veys, E.M. & Verbruggen, G. Insulin-like growth factor 1-induced interleukin-1 receptor II overrides the activity of interleukin-1 and controls the homeostasis of the extracellular matrix of cartilage. Arthritis Rheum 48, 1281–91 (2003).

    Article  Google Scholar 

  36. Morales, T.I. The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage. Arch Biochem Biophys 343, 164–72 (1997).

    Article  Google Scholar 

  37. Claeys, I. et al. Insulin-related peptides and their conserved signal transduction pathway. Peptides 23, 807–16 (2002).

    Article  Google Scholar 

  38. Bunn, R.C. & Fowlkes, J.L. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab 14, 176–81 (2003).

    Article  Google Scholar 

  39. Dupont, J., Dunn, S.E., Barrett, J.C. & LeRoith, D. Microarray analysis and identification of novel molecules involved in insulin-like growth factor-1 receptor signaling and gene expression. Recent Prog Horm Res 58, 325–42 (2003).

    Article  Google Scholar 

  40. Dupont, J. & Holzenberger, M. Biology of insulin-like growth factors in development. Birth Defects Res C Embryo Today 69, 257–71 (2003).

    Article  Google Scholar 

  41. Nakajima, H., Goto, T., Horikawa, O., Kikuchi, T. & Shinmei, M. Characterization of the cells in the repair tissue of full-thickness articular cartilage defects. Histochem Cell Biol 109, 331–8 (1998).

    Article  Google Scholar 

  42. Jones, J.I. & Clemmons, D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16, 3–34 (1995).

    Article  Google Scholar 

  43. Matsumoto, T., Gargosky, S.E., Iwasaki, K. & Rosenfeld, R.G. Identification and characterization of insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases in human synovial fluid. J Clin Endocrinol Metab 81, 150–5 (1996).

    Article  Google Scholar 

  44. Clemmons, D.R. IGF binding proteins: regulation of cellular actions. Growth Regul 2, 80–7 (1992).

    Google Scholar 

  45. Morales, T.I. The insulin-like growth factor binding proteins in uncultured human cartilage: increases in insulin-like growth factor binding protein 3 during osteoarthritis. Arthritis Rheum 46, 2358–67 (2002).

    Article  Google Scholar 

  46. Malemud, C.J. Cytokines as therapeutic targets for osteoarthritis. BioDrugs 18, 23–35 (2004).

    Article  Google Scholar 

  47. Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T. & Miyazono, K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7, 1191–204 (2002).

    Article  Google Scholar 

  48. Zimmerman, C.M. & Padgett, R.W. Transforming growth factor beta signaling mediators and modulators. Gene 249, 17–30 (2000).

    Article  Google Scholar 

  49. Heldin, C.H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–71 (1997).

    Article  Google Scholar 

  50. Balemans, W. & Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250, 231–50 (2002).

    Google Scholar 

  51. Reddi, A.H. Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am 83-ASuppl 1, S1–6 (2001).

    MathSciNet  Google Scholar 

  52. Reddi, A.H. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res 3, 1–5 (2001).

    Article  Google Scholar 

  53. Miyazono, K. Positive and negative regulation of TGF-beta signaling. J Cell Sci 113 ( Pt 7), 1101–9 (2000).

    Google Scholar 

  54. Miyazono, K., Kusanagi, K. & Inoue, H. Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 187, 265–76 (2001).

    Article  Google Scholar 

  55. Li, T.F., O’Keefe, R.J. & Chen, D. TGF-beta signaling in chondrocytes. Front Biosci 10, 681–8 (2005).

    Article  Google Scholar 

  56. van Beuningen, H.M., van der Kraan, P.M., Arntz, O.J. & van den Berg, W.B. Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor beta: studies in anatomically intact cartilage in vitro and in vivo. Ann Rheum Dis 52, 185–91 (1993).

    Article  Google Scholar 

  57. Qi, W.N. & Scully, S.P. Effect of type II collagen in chondrocyte response to TGF-beta 1 regulation. Exp Cell Res 241, 142–50 (1998).

    Article  Google Scholar 

  58. Pedrozo, H.A. et al. Growth plate chondrocytes store latent transforming growth factor (TGF)-beta 1 in their matrix through latent TGF-beta 1 binding protein-1. J Cell Physiol 177, 343–54 (1998).

    Article  Google Scholar 

  59. Hynes, R.O. Cell adhesion: old and new questions. Trends Cell Biol 9, M33–7 (1999).

    Article  Google Scholar 

  60. Morales, T.I. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures. Arch Biochem Biophys 286, 99–106 (1991).

    Article  Google Scholar 

  61. Guerne, P.A., Sublet, A. & Lotz, M. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158, 476–84 (1994).

    Article  Google Scholar 

  62. Bitzer, M. et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 14, 187–97 (2000).

    Google Scholar 

  63. Schneiderbauer, M.M., Dutton, C.M. & Scully, S.P. Signaling “cross-talk” between TGF-beta1 and ECM signals in chondrocytic cells. Cell Signal 16, 1133–40 (2004).

    Article  Google Scholar 

  64. Cook, S.D., Barrack, R.L., Patron, L.P. & Salkeld, S.L. Osteogenic protein-1 in knee arthritis and arthroplasty. Clin Orthop Relat Res, 140–5 (2004).

    Google Scholar 

  65. Luyten, F.P. et al. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem 267, 3691–5 (1992).

    Google Scholar 

  66. Reddi, A.H. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 6, 351–9 (2000).

    Article  Google Scholar 

  67. Brunet, L.J., McMahon, J.A., McMahon, A.P. & Harland, R.M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–7 (1998).

    Article  Google Scholar 

  68. Frenkel, S.R. et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plast Reconstr Surg 105, 980–90 (2000).

    Article  Google Scholar 

  69. Nishida, Y., Knudson, C.B., Kuettner, K.E. & Knudson, W. Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthritis Cartilage 8, 127–36 (2000).

    Article  Google Scholar 

  70. Vinall, R.L., Lo, S.H. & Reddi, A.H. Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res 272, 32–44 (2002).

    Article  Google Scholar 

  71. Lietman, S.A., Yanagishita, M., Sampath, T.K. & Reddi, A.H. Stimulation of proteoglycan synthesis in explants of porcine articular cartilage by recombinant osteogenic protein-1 (bone morphogenetic protein-7). J Bone Joint Surg Am 79, 1132–7 (1997).

    Google Scholar 

  72. Heldin, C.H. Platelet-derived growth factor—an introduction. Cytokine Growth Factor Rev 15, 195–6 (2004).

    Article  Google Scholar 

  73. Betsholtz, C. Biology of platelet-derived growth factors in development. Birth Defects Res C Embryo Today 69, 272–85 (2003).

    Article  Google Scholar 

  74. Schafer, S.J., Luyten, F.P., Yanagishita, M. & Reddi, A.H. Proteoglycan metabolism is age related and modulated by isoforms of platelet-derived growth factor in bovine articular cartilage explant cultures. Arch Biochem Biophys 302, 431–8 (1993).

    Article  Google Scholar 

  75. Harvey, A.K., Stack, S.T. & Chandrasekhar, S. Differential modulation of degradative and repair responses of interleukin-1-treated chondrocytes by platelet-derived growth factor. Biochem J 292 ( Pt 1), 129–36 (1993).

    Google Scholar 

  76. Sah, R.L., Chen, A.C., Grodzinsky, A.J. & Trippel, S.B. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308, 137–47 (1994).

    Article  Google Scholar 

  77. Chin, J.E., Hatfield, C.A., Krzesicki, R.F. & Herblin, W.F. Interactions between interleukin-1 and basic fibroblast growth factor on articular chondrocytes. Effects on cell growth, prostanoid production, and receptor modulation. Arthritis Rheum 34, 314–24 (1991).

    Article  Google Scholar 

  78. Klooster, A.R. & Bernier, S.M. Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocyte. Arthritis Res Ther 7, R127–38 (2005).

    Article  Google Scholar 

  79. Huh, Y.H., Kim, S.H., Kim, S.J. & Chun, J.S. Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogenactivated protein kinase in articular chondrocytes. J Biol Chem 278, 9691–7 (2003).

    Article  Google Scholar 

  80. Enomoto, H. et al. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol 162, 171–81 (2003).

    Google Scholar 

  81. Pufe, T., Petersen, W., Tillmann, B. & Mentlein, R. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44, 1082–8 (2001).

    Article  Google Scholar 

  82. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13, 9–22 (1999).

    Google Scholar 

  83. Pulsatelli, L. et al. Vascular endothelial growth factor activities on osteoarthritic chondrocytes. Clin Exp Rheumatol 23, 487–93 (2005).

    Google Scholar 

  84. Pfander, D. et al. Hepatocyte growth factor in human osteoarthritic cartilage. Osteoarthritis Cartilage 7, 548–59 (1999).

    Article  Google Scholar 

  85. Moo, V., Sieper, J., Herzog, V. & Muller, B.M. Regulation of expression of cytokines and growth factors in osteoarthritic cartilage explants. Clin Rheumatol 20, 353–8 (2001).

    Article  Google Scholar 

  86. Attur, M.G., Dave, M., Akamatsu, M., Katoh, M. & Amin, A.R. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage 10, 1–4 (2002).

    Article  Google Scholar 

  87. Pfander, D., Heinz, N., Rothe, P., Carl, H.D. & Swoboda, B. Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1beta: a possible explanation for the changes in matrix synthesis during osteoarthritis. Ann Rheum Dis 63, 240–4 (2004).

    Article  Google Scholar 

  88. Stabellini, G. et al. Effects of interleukin-1beta on chondroblast viability and extracellular matrix changes in bovine articular cartilage explants. Biomed Pharmacother 57, 314–9 (2003).

    Article  Google Scholar 

  89. Vosshenrich, C.A. & Di Santo, J.P. Interleukin signaling. Curr Biol 12, R760–3 (2002).

    Article  Google Scholar 

  90. Legendre, F., Dudhia, J., Pujol, J.P. & Bogdanowicz, P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem 278, 2903–12 (2003).

    Article  Google Scholar 

  91. Blanco, F.J., Ochs, R.L., Schwarz, H. & Lotz, M. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146, 75–85 (1995).

    Google Scholar 

  92. Olee, T., Hashimoto, S., Quach, J. & Lotz, M. IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162, 1096–100 (1999).

    Google Scholar 

  93. Seguin, C.A. & Bernier, S.M. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways. J Cell Physiol 197, 356–69 (2003).

    Article  Google Scholar 

  94. Malemud, C.J. Fundamental pathways in osteoarthritis: an overview. Front Biosci 4, D659–61 (1999).

    Article  Google Scholar 

  95. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ 10, 45–65 (2003).

    Article  Google Scholar 

  96. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11, 372–7 (2001).

    Article  Google Scholar 

  97. Scherle, P.A., Pratta, M.A., Feeser, W.S., Tancula, E.J. & Arner, E.C. The effects of IL-1 on mitogenactivated protein kinases in rabbit articular chondrocytes. Biochem Biophys Res Commun 230, 573–7 (1997).

    Article  Google Scholar 

  98. Olney, R.C., Wilson, D.M., Mohtai, M., Fielder, P.J. & Smith, R.L. Interleukin-1 and tumor necrosis factor-alpha increase insulin-like growth factor-binding protein-3 (IGFBP-3) production and IGFBP-3 protease activity in human articular chondrocytes. J Endocrinol 146, 279–86 (1995).

    Google Scholar 

  99. Hoffman, A.S. Hydrogels for biomedical applications. Adv Drug Deliv Rev 54, 3–12 (2002).

    Article  Google Scholar 

  100. Lee, K.Y. & Mooney, D.J. Hydrogels for tissue engineering. Chem Rev 101, 1869–79 (2001).

    Article  Google Scholar 

  101. Gutowska, A., Jeong, B. & Jasionowski, M. Injectable gels for tissue engineering. Anat Rec 263, 342–9 (2001).

    Article  Google Scholar 

  102. Benya, P.D. & Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–24 (1982).

    Article  Google Scholar 

  103. Elisseeff, J.H., Lee, A., Kleinman, H.K. & Yamada, Y. Biological response of chondrocytes to hydrogels. Ann N Y Acad Sci 961, 118–22 (2002).

    Google Scholar 

  104. Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A. & Mooney, D.J. Engineering growing tissues. Proc Natl Acad Sci U S A 99, 12025–30 (2002).

    Article  Google Scholar 

  105. Grunder, T. et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 12, 559–67 (2004).

    Article  Google Scholar 

  106. Chubinskaya, S. et al. Gene expression by human articular chondrocytes cultured in alginate beads. J Histochem Cytochem 49, 1211–20 (2001).

    Google Scholar 

  107. Starkman, B.G., Cravero, J.D., Delcarlo, M. & Loeser, R.F. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem J 389, 723–9 (2005).

    Article  Google Scholar 

  108. Almqvist, K.F. et al. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 60, 781–90 (2001).

    Article  Google Scholar 

  109. Perka, C., Spitzer, R.S., Lindenhayn, K., Sittinger, M. & Schultz, O. Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res 49, 305–11 (2000).

    Article  Google Scholar 

  110. Qi, W.N. & Scully, S.P. Type II collagen modulates the composition of extracellular matrix synthesized by articular chondrocytes. J Orthop Res 21, 282–9 (2003).

    Article  Google Scholar 

  111. Flechtenmacher, J. et al. Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum 39, 1896–904 (1996).

    Article  Google Scholar 

  112. Clancy, R.M. et al. Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100, 1789–96 (1997).

    Google Scholar 

  113. Girotto, D. et al. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 24, 3265–75 (2003).

    Article  Google Scholar 

  114. Miralles, G. et al. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 57, 268–78 (2001).

    Article  Google Scholar 

  115. Elisseeff, J., McIntosh, W., Fu, K., Blunk, B.T. & Langer, R. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 19, 1098–104 (2001).

    Article  Google Scholar 

  116. Fisher, J.P., Jo, S., Mikos, A.G. & Reddi, A.H. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res A 71, 268–74 (2004).

    Article  Google Scholar 

  117. Park, Y., Lutolf, M.P., Hubbell, J.A., Hunziker, E.B. & Wong, M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10, 515–22 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Yoon, D.M., Fisher, J.P. (2006). Chondrocyte Signaling and Artificial Matrices for Articular Cartilage Engineering. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics