Skip to main content

Preparation of Sponge Using Porcine Small Intesinal Submucosa and Their Applications as a Scaffold and a Wound Dressing

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

Small intestine submucosa (SIS) derived from the submucosal layer of porcine intestine cause minimum immune response as acellular collagen based matrix1,2 and moreover is a biodegradable.3 SIS consists of types I and III collagens above 90% and small amounts of types IV, V, and VI collagens.4 In addition, SIS contains a wide variety of cytokine such as basic fibroblast growth factor (bFGF), transforming growth factor-β (TGF-β), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) as well as glycosaminoglycans, fibronectins, chondroitin sulfates, heparins, heparin sulfates, and hyaluronic acids.5,6 These constituents are well known to play an important role for tissue remodeling and wound healing. SIS has been used as commercial goods in practical biomedical fields such as the repair of numerous body tissues including musculotendinous structures, lower urinary tract reconstruction, dura mater replacement, vascular reconstruction, and the repair of full and partial thickness skin wounds.79

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.6. References

  1. E. M. Palmer, B. A. Beilfuss, T. Nagai, R. T. Semnani, S. F. Badylak, and G. A. Van Seventer, Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa, Tissue Eng., 8, 893–900 (2002).

    Article  Google Scholar 

  2. J. Allman, T. B. McPherson, S. F. Badylak, L. C. Merrill, B. Kallakury, C. Sheehan, R. H. Raeder, and D. W. Metzger, Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response, Transplantation, 71, 1631–1640 (2001).

    Article  Google Scholar 

  3. B. P. Kropp, Small-intestinal submucosa for bladder augmentation: a review of preclinical studies, World J. Urol., 16, 262–267 (1998).

    Article  Google Scholar 

  4. M. F. Graham, R. F. Diegelmann, C. O. Elson, W. J. Lindblad, N. Gotschalk, S. Gay, and R. Gay, Collagen content and types in the intestinal strictures of Crohn’s disease, Gastroenterology, 94, 257–265 (1998).

    Google Scholar 

  5. S. L. Voytik-Harbin, A. O. Brightman, M. R. Krain, B. Waisner, and S. F. Badylak, Identification of extractable growth factors from small intestinal submucosa, J. Cellular Biochem., 67, 478–491 (1997).

    Article  Google Scholar 

  6. J. Hodde, Naturally occurring scaffolds for soft tissue repair and regeneration, Tissue Eng., 8, 295–308 (2002).

    Article  Google Scholar 

  7. Y. M. Bello, A. F. Falabella, and W. H. Eaglstein, Tissue-engineered skin. Current status in wound healing, Am. J. Clin. Dermatol., 2, 305–313 (2001).

    Article  Google Scholar 

  8. Y. Zhang, B. P. Kropp, P. Moore, R. Cowan, P. D. 3rd Furness, M. E. Kolligian, P. Frey, and E. Y. Cheng, Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: Potential applications for tissue engineering technology, J. Urol., 164, 928–935 (2000).

    Article  Google Scholar 

  9. J. A. Gastel, W. R. Muirhead, J. T. Lifrak, P. D. Fadale, M. J. Hulstyn, and D. P. Labrador, Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa, Arthroscopy, 17, 151–159 (2001).

    Article  Google Scholar 

  10. D. W. Hutmacher, Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives, J. Biomater. Sci. Polym. Ed., 12, 107–124 (2001).

    Article  Google Scholar 

  11. C. M. Agrawal and R. B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res., 55, 141–150 (2001).

    Article  Google Scholar 

  12. W. L. Murphy and D. J. Mooney, Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices, J. Periodontal Res., 34, 413–419 (1999).

    Article  Google Scholar 

  13. S. K. Kim, K. D. Hong, J. W. Jang, S. J. Lee, M. S. Kim, G. Khang, I. Lee, and H. B. Lee, Tissue engineered spinal cord using bone marrow stromal stem cells seeded PGA scaffolds; Preliminary study, Tissue Eng. Regen. Med., 1(2), 149–156 (2004).

    Google Scholar 

  14. G. Khang, P. Shin, I. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Preparation and characterization of small intestine submucosa particle impregnated PLA scaffold: The application of tissue engineered bone and cartilage, Macromolecular Res., 10, 158–167 (2002).

    Google Scholar 

  15. D. W. Hutmacher and M. Sittinger, Periosteal cells in bone tissue engineering, Tissue Eng., 9, S45–64 (2003).

    Article  Google Scholar 

  16. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Natural scaffolds biomaterials for tissue regeneration, Tissue Eng. Regen. Med., 1(1), 9–20 (2004).

    Google Scholar 

  17. K. Lindberg and S. F. Badylak, Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins, Burns, 27, 254–266, (2001).

    Article  Google Scholar 

  18. S. F. Badylak, The extracellular matrix as a scaffold for tissue reconstruction, Seminars in Cell & Developmental Biology, 13, 377–383 (2002).

    Article  Google Scholar 

  19. S. F. Badylak, B. T. Kropp, B. McPherson, H. Liang, and P. W. Snyder, Small intestional submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model, Tissue Eng., 4, 379–387 (1998).

    Article  Google Scholar 

  20. E. H. Ledet, A. L. Carl, D. J. DiRisio, M. P. Tymeson, L. B. Andersen, C. E. Sheehan, B. Kallakury, M. Slivka, and H. Serhan, A pilot study to evaluate the effectiveness of small intestinal submucosa used to repair spinal ligaments in the goat, The Spine Journal, 2, 188–196 (2002).

    Article  Google Scholar 

  21. K. Sato, T. Tanahashi-Shiina, F. Jun, A. Watanabe-Kawamura, M. Ichinomiya, Y. Minegishi, Y. Tsukamasa, Y. Nakmura, M. Kawabata, K. Ohtsuki, Simple and rapid chronaographic purification of type V collagen from a pepsin digest of porcine intedtinal connective tissue, an unmanageable starting material for conventional column chromatography, Journal of Chromatography B, 790, 277–283 (2003).

    Article  Google Scholar 

  22. M. T. Sheu, J. C. Huang, G. C. Yeh, and H. O. Ho, Characterization of collagen gel solutions and collagen matrices for cell culture, Biomaterials, 22, 1713–1719 (2001).

    Article  Google Scholar 

  23. Y. Chang, C. C. Tsai, H. C. Liang, and H. W. Sung, In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin), Biomaterials, 3, 2447–2457 (2002).

    Article  Google Scholar 

  24. V. Charulatha and A. Rajaram, Influence of different crosslinking treatments on the physical properties of collagen membranes, Biomaterials, 24, 759–767 (2003).

    Article  Google Scholar 

  25. J. S. Pieper, T. Hafmans, J. H. Veerkamp, and T. H. Van Kuppevelt, Development of tailor-made collagenglycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects, Biomaterials, 21, 581–593 (2000).

    Article  Google Scholar 

  26. G. T. Hermanson, Bioconjugate Techniques; Academic Press: San Diego, 1996.

    Google Scholar 

  27. S. N. Park, J. C. Park, H. O. Kim, M. I. Song, and H. Suh, Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking, Biomaterials, 23, 1205–1212 (2002).

    Article  Google Scholar 

  28. H. W. Shin, S. H. Kim, J. W. Jang, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Preparation and characterization of sponge using porcine small intestinal submucosa, Polymer(Korea), 28, 194–200 (2004).

    Google Scholar 

  29. L. A. Forato, R. B. Filho, and L. A. Colnago, Protein structure in KBr pellets by infrared spectroscopy, Anal. Biochem., 5, 136–141 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kim, M.S. et al. (2006). Preparation of Sponge Using Porcine Small Intesinal Submucosa and Their Applications as a Scaffold and a Wound Dressing. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics