Skip to main content

Evaluation of Various Types of Scaffold for Tissue Engineered Intervertebral Disc

  • Conference paper
Tissue Engineering

Abstract

Intervertebral discs (IVD) are specialized structures to anchor adjacent vertebral bodies conferring flexibility and providing mechanical stability during axial compression1. Degeneration of IVD results in discogenic low back pain and limited mobility. Very recently, to overcome limited success of current surgical treatment focused on fusion, few studies have been started by tissue engineering technique2,3. It has been recognized that tissue engineering offers an alternative techniques to whole organ and tissue transplantation for diseased, failed or malfunctioned organs4,5. In tissue engineering of IVD, presence of disc cells harvested from IVD tissue of donor and proper scaffold is needed68.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.6. References

  1. G. Khang, E. J. Kim, S. H. Kim, K. S. Park, C. W. Han, Y. S. Yang, and H. B. Lee, Recent development trend of artificial disc, Tissue Eng. Regen. Med., 2(1), 20–28 (2005).

    Google Scholar 

  2. H. Mizuno, A. K. Roy, C. A. Vacanti, K. Kojima, M. Ueda, and L. J. Bonassar, Tissue-engineered composites of annulus fibrosus and nucleus pulposus for intervertebral disc replacement, Spine, 29(12), 1290–1298 (2004).

    Article  Google Scholar 

  3. C. A. Seguin, M. D. Grynpas, R. M. Pillar, S. D. Walden and R. A. Kandal, Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate, Spine, 29(12), 1299–1307 (2004).

    Article  Google Scholar 

  4. G. Khang, and H. B. Lee, Chap. 67, Cell-synthetic surface interaction: Physicochemical surface modification. In Methods of Tissue Engineering, Edited by A. Atala and R. Lanza, (Academic Press, New York, 2001), pp 771–780.

    Google Scholar 

  5. G. Khang, S. J. Lee, M. S. Kim, and H. B. Lee, Scaffolds; Tissue Engineering, In Webster’s Biomedical Engineering Handbook, Edited by S. Webster, (John & Wiley Press, NY, 2005), in press.

    Google Scholar 

  6. G. Khang, S. J. Lee, C. W. Han, J. M. Rhee, and H. B. Lee, Chap. 17, Preparation and characterization of natural/synthetic hybrid scaffolds, In Advances in Experimental Medicine and Biology, vol. 657, Edited by M. Elcin, (Kluwer-Plenum Press, London, 2003), pp 235–245.

    Google Scholar 

  7. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Natural scaffolds biomaterials for tissue regeneration, Tissue Eng. Regen. Med., 1(1), 9–20 (2004).

    Google Scholar 

  8. G. Khang, S. K. Kim, K. D. Hong, W. Y. Jang, C. W. Han, I. Lee, and H. B. Lee, Recent advances for regeneration of the injured spinal cord, Tissue Eng. Regen. Med., 1(2), 136–142 (2004).

    Google Scholar 

  9. D. E. Perrin, and P. E. English, Chap.1, Polyglycolide and polylactide. In Handbook of Biodegradable Polymers, Edited by A. J. Domb, J. Kost and D. M. Wiseman, (Harwood Academic Publishers, Netherlands, 1997), pp 3–28.

    Google Scholar 

  10. G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, M. K. Choi, and H. B. Lee, Preparation and characterization of dimineralized bone particle impregnated PLA scaffold, Macromol. Res., 9, 267–276 (2001).

    Google Scholar 

  11. G. Khang, P. Shin, I. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Preparation and characterization of small intestine submucosa particle impregnated PLA scaffold: The application of tissue engineered bone and cartilage, Macromol. Res., 10, 158–167 (2002).

    Google Scholar 

  12. S. J. Lee, G. Khang, Y. M. Lee, and H. B. Lee, Interaction of human chondrocyte and fibroblast cell onto chloric acid treated poly(α-hydroxy acid) surface, J. Biomater. Sci., Polym. Ed., 13, 197–212 (2002).

    Article  Google Scholar 

  13. G. Khang, C. W. Choee, J. M. Rhee, and H. B. Lee, Interaction of different types of cells on physicochemically treated PLGA surface, J. Appl. Polymer Sci., 85, 1253–1262 (2002).

    Article  Google Scholar 

  14. G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho and H. B. Lee, Development of local drug delivery system using biodegradable polymers, Macromol. Res., 11(4), 207–223 (2003).

    Google Scholar 

  15. E. K. Jeon, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Preparation and release profile of NGF-loaded polylactide scaffolds for tissue engineered nerve regeneration, Polymer(Korea), 25, 893–901 (2001).

    Google Scholar 

  16. K. S. Park, E. J. Kim, C. W. Han, I. Lee, H. B. Lee, and G. Khang, Preparation and release profile of tranforming growth factor-β1 into alginate beads for tissue engineering, Macromol. Res., 13, 285–292 (2005).

    Google Scholar 

  17. M. R. Urist, Bone: formation by autoinduction, Science, 150, 893–899 (1965).

    Article  Google Scholar 

  18. S. Mizuno, and J. Glowacki, Three-dimensional composite of demineralised bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblast, Biomaterials, 17, 1819–1825 (1996).

    Article  Google Scholar 

  19. S. L. Voytik-Harvin, A. O. Brightman, M. R. Kraine, B. Waisner, and S. F. Badylak, Identification of extractable growth factors from small intestine submucosa, J. Cell. Biochem., 67, 478–491 (1997).

    Article  Google Scholar 

  20. M. S. Kim, K. D. Hong, H. W. Shin, S. H. Kim, S. H. Kim, M. S. Lee, W. Y. Jang, G. Khang, and H. B. Lee, Preparation of porcine small intestine submucosa sponge and their application as a wound dressing in full-thickness skin defect of rat, Int J. Biological Macromolecules, 36, 54–60 (2005).

    Article  Google Scholar 

  21. J. W. Jang, K. S. Park, S. H. Kim, C. S. Park, M. S. Kim, C. W. Han, J. M. Rhee, G. Khang and H. B. Lee, Tissue engineered bone regeneration using DBP-loaded PLGA scaffold in rabbit model, Tissue Eng. Regen. Med., 2(1), 34–40 (2005).

    Google Scholar 

  22. S. J. Lee, J. S. Choi, K. S. Park, G. Khang, Y. M. Lee and H. B. Lee, Surface roughness on MG63 osteoblast-like cells to the polycarbonate membrane surfaces with different micropore sizes, Biomaterials, 25, 4699–4707 (2004).

    Article  Google Scholar 

  23. S. J. Lee, I. Lee, Y. M. Lee, H. B. Lee and G. Khang, Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(lactide-co-glycolide) for tissue engineered bone, J. Biomater. Sci., Polym. Ed., 15(8), 1003–1017 (2004).

    Article  Google Scholar 

  24. M. Rosen, J. Ponsky, R. Petras, A. Fanning, F. Brody, and F. Duperier, Small intestinal submucosa as a bioscaffold for biliary tract regeneration, Surgery, 132(3), 480–486 (2002).

    Article  Google Scholar 

  25. C. A. Sundback, J. Y. Shyu, Y. Wang, W. C. Faquin, R. S. Langer, J. P. Vacanti, and T. A. Hadlock, Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material, Biomaterials, 26, 5454–5464 (2005).

    Article  Google Scholar 

  26. S. L. Ishaug, M. J. Yasemski, R. Bizios, and A. G. Mikos, Osteoblast function on synthetic biodegradable polymers, J. Biomed. Mater. Res., 28, 1445–1453 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kim, S.H. et al. (2006). Evaluation of Various Types of Scaffold for Tissue Engineered Intervertebral Disc. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics