Skip to main content

Temporal Changes in PEG Hydrogel Structure Influence Human Mesenchymal Stem Cell Proliferation and Matrix Mineralization

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

Preventing bone resorption or facilitating bone regeneration are major clinical challenges for several dental procedures, including ridge preservation after tooth extractions, integration of tooth implants, and the treatment of severe periodontal disease1, 2. Many of the current treatments fail because of the inability of the materials and methods to heal osseous defects. Thus, recent directions in tissue engineering suggest strategies to design synthetic carriers for cell-based therapies that are targeted towards bone regeneration. For example, several groups35 are interested in the development of injectable gel carriers that would allow simple and reproducible clinical delivery of human mesenchymal stem cells (hMSCs) to treat bone defects. From a bone tissue engineering perspective, hMSCs have many advantages. A large number of hMSCs can be easily obtained by aspiration of adult bone marrow6, and these multipotent cells can then be coaxed to differentiate into osteoblasts by exposure to specific growth factors or hormones at the right time and with the right dose (e.g., dexamethasone, BMPs, others)79. During their differentiation to osteoblasts, hMSCs secrete significant amounts of extracellular matrix molecules, providing further advantages for tissue regeneration. Because of these properties, numerous groups are exploring the development of hydrogels for three-dimensional culture and expansion of hMSCs; controlled differentiation of hMSCs to osteoblasts10, chondrocytes11, and other cell types12; and the targeted delivery of hMSCs to bone defects13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.6. References

  1. K. Al-Hamdan, R. Eber, D. Sarment, C. Kowalski, H. L. Wang, Guided tissue regeneration-based root coverage: Meta-analysis, J. Periodont. 74(10), 1520–1533 (2003).

    Article  Google Scholar 

  2. L. Laurell, J. Gottlow, M. Zybutz, R. Persson, Treatment of intrabony defects by different surgical procedures. A literature review, J. Periodont. 69(3), 303–313 (1998).

    Google Scholar 

  3. J. S. Temenoff, H. Park, E. Jabbari, T. L. Sheffield, R. G. LeBaron, C. G. Ambrose, A. G. Mikos, In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels, J. Biomed. Mater. Res. Part A 70A(2), 235–244 (2004).

    Article  Google Scholar 

  4. B. Sharma, J. H. Elisseeff, Engineering structurally organized cartilage and bone tissues, Ann. Biomed. Eng. 32(1), 148–159 (2004).

    Article  Google Scholar 

  5. C. R. Nuttelman, M. C. Tripodi, K. S. Anseth, Synthetic hydrogel niches that promote hMSC viability, Matrix Biol. 24(3), 208–218 (2005).

    Article  Google Scholar 

  6. C. B. Ballas, S. P. Zielske, S. L. Gerson, Adult bone marrow stem cells for cell and gene therapies: Implications for greater use, J. Cell. Biochem. 38(Supplement), 20–28 (2002).

    Article  Google Scholar 

  7. A. I. Caplan, Mesenchymal Stem-Cells, J. Orthop. Res. 9(5), 641–650 (1991).

    Article  Google Scholar 

  8. S. E. Haynesworth, M. A. Baber, A. I. Caplan, Cell-Surface Antigens On Human Marrow-Derived Mesenchymal Cells Are Detected By Monoclonal-Antibodies, Bone 13(1), 69–80 (1992).

    Article  Google Scholar 

  9. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, D. R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284(5411), 143–147 (1999).

    Article  Google Scholar 

  10. L. Wang, R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, J. E. Barralet, Evaluation of sodium alginate for bone marrow cell tissue engineering, Biomaterials 24(20), 3475–3481 (2003).

    Article  Google Scholar 

  11. W. J. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, R. S. Tuan, A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells, Biomaterials 26(6), 599–609 (2005).

    Article  Google Scholar 

  12. W. J. Li, R. Tuli, X. X. Huang, P. Laquerriere, R. S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold, Biomaterials 26(25), 5158–5166 (2005).

    Article  Google Scholar 

  13. H. Shin, P. Q. Ruhe, A. G. Mikos, J. A. Jansen, In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels, Biomaterials 24(19), 3201–3211 (2003).

    Article  Google Scholar 

  14. H. Shin, K. Zygourakis, M. C. Farach-Carson, M. J. Yaszemski, A. G. Mikos, Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides, J. Biomed. Mater. Res. Part A 69A(3), 535–543 (2004).

    Article  Google Scholar 

  15. F. Yang, C. G. Williams, D. A. Wang, H. Lee, P. N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26(30), 5991–5998 (2005).

    Article  Google Scholar 

  16. J. Elisseeff, W. McIntosh, K. Fu, T. Blunk, R. Langer, Controlled-release of IGF-I and TGF-beta 1 in a photopolymerizing hydrogel for cartilage tissue engineering, J. Orthop. Res. 19(6), 1098–1104 (2001).

    Article  Google Scholar 

  17. C. R. Nuttelman, M. C. Tripodi, K. S. Anseth, Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs, J. Biomed. Mater. Res. 76A, 183–195 (2005).

    Article  Google Scholar 

  18. A. S. Sawhney, C. P. Pathak, J. A. Hubbell, Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers, Macromolecules 26(4), 581–587 (1993).

    Article  Google Scholar 

  19. S. Lin-Gibson, S. Bencherif, J. A. Cooper, S. J. Wetzel, J. M. Antonucci, B. M. Vogel, F. Horkay, N. R. Washburn, Synthesis and characterization of PEG dimethacrylates and their hydrogels, Biomacromolecules 5(4), 1280–7 (2004).

    Article  Google Scholar 

  20. S. J. Bryant, C. R. Nuttelman, K. S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro, J. Biomater. Sci.-Polym. Ed. 11(5), 439–457 (2000).

    Article  Google Scholar 

  21. S. J. Bryant, K. S. Anseth, Photopolymerization of hydrogel scaffolds. In Scaffolding in Tissue Engineering, J. Elisseeff; P. X. Ma, Eds. Marcel Dekker, Inc.: Vol. In Press.

    Google Scholar 

  22. A. T. Metters, K. S. Anseth, C. N. Bowman, Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel, Polymer 41(11), 3993–4004 (2000).

    Article  Google Scholar 

  23. A. T. Metters, C. N. Bowman, K. S. Anseth, Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels, Aiche J. 47(6), 1432–1437 (2001).

    Article  Google Scholar 

  24. P. Martens, A. T. Metters, K. S. Anseth, C. N. Bowman, A generalized bulk-degradation model for hydrogel networks formed from multivinyl cross-linking molecules, J. Phys. Chem. B 105(22), 5131–5138 (2001).

    Article  Google Scholar 

  25. A. T. Metters, C. N. Bowman, K. S. Anseth, A statistical kinetic model for the bulk degradation of PLAb-PEG-b-PLA hydrogel networks, J. Phys. Chem. B 104(30), 7043–7049 (2000).

    Article  Google Scholar 

  26. V. I. Sikavitsas, J. S. Temenoff, A. G. Mikos, Biomaterials and bone mechanotransduction, Biomaterials 22, 2581–2593 (2001).

    Article  Google Scholar 

  27. M. Holtrop, The ultrastructure of bone, Annals of Clinical and Laboratory Science 5264–271 (1975).

    Google Scholar 

  28. W. L. Murphy, D. J. Mooney, Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata, J Am Chem Soc 124(9), 1910–7 (2002).

    Article  Google Scholar 

  29. J. Song, E. Saiz, C. R. Bertozzi, A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites, J Am Chem Soc 125(5), 1236–43 (2003).

    Article  Google Scholar 

  30. H. Ohgushi, A. I. Caplan, Stem cell technology and bioceramics: from cell to gene engineering, J Biomed Mater Res 48(6), 913–27 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nuttelman, C.R., Kloxin, A.M., Anseth, K.S. (2006). Temporal Changes in PEG Hydrogel Structure Influence Human Mesenchymal Stem Cell Proliferation and Matrix Mineralization. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics