Skip to main content

Treatment of Human Fibroblasts Carrying NPC1 Missense Mutations with MG132 Leads to an Improvement of Intracellular Cholesterol Trafficking

  • Research Report
  • Chapter
  • First Online:
JIMD Reports - Case and Research Reports, 2011/2

Part of the book series: JIMD Reports ((JIMD,volume 2))

Abstract

Niemann Pick type C (NPC) disease is an autosomal recessive disorder characterized by the lysosomal/late endosomal (LE) accumulation of unesterified cholesterol and other lipids due to a defect in the intracellular lipid trafficking. About 95% of patients present mutations in the NPC1 gene. Among the 290 mutations reported in the NPC1 gene, about 70% are missense. However, little information is available regarding the impact of missense mutations on NPC1 protein stability and function. In this study, we in vitro characterized the pathogenic effect of 7 NPC1 missense mutations. In all cases, the basal levels of mutant NPC1 expression were reduced with respect to wild type. Treatment of fibroblasts carrying NPC1 missense mutations in homo or hemizygosity, with the proteasome inhibitor MG132 or glycerol 10%, a chemical chaperone known to stabilize misfolded proteins, resulted in a significant increase of NPC1 protein levels in all cell lines, indicating that these mutants are subjected to proteasomal degradation due to protein misfolding The increment of NPC1 mutant protein induced by the proteasome inhibitor was associated with a localization of NPC1 protein within lysosomal/LE compartment. In cell lines carrying mutations p.N1156S, p.L1191F, p.V1165M, and p.I1061T, the increment of NPC1 mutant protein resulted in an improvement of the intracellular trafficking of cholesterol and GM1. These findings showed that it is possible to correct the NPC cellular phenotype by increasing the amount of endogenous NPC1 mutated protein, suggesting that at least some NPC1 mutations might be potentially rescued by small molecules-based chaperone therapy.

Competing interests: None declared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonso P, Pampin S, Estrada J, Rodriguez-Rey JC, Giraldo P, Sancho J, Pocovi M (2005) Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 35(2):268–276

    Article  PubMed  CAS  Google Scholar 

  • Blanchette-Mackie EJ, Dwyer NK, Amende LM et al (1988) Type-C Niemann-Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes. Proc Natl Acad Sci USA 85(21):8022–8026

    Article  PubMed  CAS  Google Scholar 

  • Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272(14):9086–9092

    Article  PubMed  CAS  Google Scholar 

  • Carstea ED, Polymeropoulos MH, Parker CC et al (1993) Linkage of Niemann-Pick disease type C to human chromosome 18. Proc Natl Acad Sci USA 90(5):2002–2004

    Article  PubMed  CAS  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Ioannou YA (2000) Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem 275(32):24367–24374

    Article  PubMed  CAS  Google Scholar 

  • Di Leo E, Panico F, Tarugi P, Battisti C, Federico A, Calandra S (2004) A point mutation in the lariat branch point of intron 6 of NPC1 as the cause of abnormal pre-mRNA splicing in Niemann–Pick type C disease. Hum Mutat 24:44b

    Google Scholar 

  • Fan JQ, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5(1):112–115

    Article  PubMed  CAS  Google Scholar 

  • Fancello T, Dardis A, Rosano C et al (2009) Molecular analysis of NPC1 and NPC2 gene in 34 Niemann-Pick C Italian patients: identification and structural modeling of novel mutations. Neurogenetics 10(3):229–239

    Article  PubMed  CAS  Google Scholar 

  • Gelsthorpe ME, Baumann N, Millard E, Gale SE, Langmade SJ, Schaffer JE, Ory DS (2008) Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 283(13):8229–8236

    Article  PubMed  CAS  Google Scholar 

  • Greer WL, Riddell DC, Gillan TL et al (1998) The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097– > T transversion in NPC1. Am J Hum Genet 63(1):52–54

    Article  PubMed  CAS  Google Scholar 

  • Infante RE, Radhakrishnan A, Abi-Mosleh L et al (2008) Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem 283:1064–1075

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88(4):427–430

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137(7):1213–1224

    Article  PubMed  Google Scholar 

  • Liao W, Li X, Mancini M, Chan L (2006) Proteasome inhibition induces differential heat shock protein response but not unfolded protein response in HepG2 cells. J Cell Biochem 99(4):1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14(11):1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Millat G, Marcais C, Rafi MA et al (1999) Niemann-Pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Hum Genet 65:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT (2005) Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab 86:220–232

    Article  PubMed  CAS  Google Scholar 

  • Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR 3rd, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134(5):769–781

    Article  PubMed  CAS  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H et al (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290(5500):2298–2301

    Article  PubMed  CAS  Google Scholar 

  • Parenti G, Zuppaldi A, Pittis MG et al (2007) Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther 15(3):508–514

    Article  PubMed  CAS  Google Scholar 

  • Park WD, O’Brien JE, Lundquist PA et al (2003) Identification of 58 novel mutations in Niemann-Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat 22:313–325

    Article  PubMed  CAS  Google Scholar 

  • Patterson M, Vanier MT, Suzuki K et al (2001) Niemann Pick disease type C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, WS Sly, Valle D (eds) The metabolic and molecular basis of inherited diseases. Mc Graw-Hill, New York, pp 611–634

    Google Scholar 

  • Ribeiro I, Marcao A, Amaral O, Sa Miranda MC, Vanier MT, Millat G (2001) Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet 109(1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Runz H, Dolle D, Schlitter AM, Zschocke J (2008) NPC-db, a Niemann-Pick type C disease gene variation database. Hum Mutat 29(3):345–350

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Marks DL, Park W et al (2001) Niemann-Pick C variant detection by altered shingolipid trafficking and correlation with mutations within specific domain of NPC1. Am J Hum Genet 68:1361–1372

    Article  PubMed  CAS  Google Scholar 

  • Tarugi P, Ballarini G, Bembi B et al (2002) Niemann–Pick type C disease. Mutations in NPC1 gene and evidence of abnormal expression of some mutant alleles in fibroblasts. J Lipid Res 43:1908–1919

    Article  PubMed  CAS  Google Scholar 

  • te Vruchte D, Lloyd-Evans E, Veldman RJ, Neville DC, Dwek RA, Platt FM, van Blitterswijk WJ, Sillence DJ (2004) Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J Biol Chem 279:26167–26175

    Article  Google Scholar 

  • Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J Biol Chem 279(14):13478–13487

    Article  PubMed  CAS  Google Scholar 

  • Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64(4):269–281

    Article  PubMed  CAS  Google Scholar 

  • Vanier MT, Millat G (2004) Structure and function of the NPC2 protein. Biochim Biophys Acta 1685(1–3):14–21

    PubMed  CAS  Google Scholar 

  • Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED (1996) Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet 58(1):118–125

    PubMed  CAS  Google Scholar 

  • Wang X, Venable J, LaPointe P et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Silvia Cattarossi for the technical assistance.

Some samples were obtained from the “Cell Line and DNA Biobank from Patients Affected by Genetic Diseases” (G. Gaslini Institute) – Telethon Genetic Biobank Network (Project No. GTB07001A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Dardis .

Editor information

Editors and Affiliations

Additional information

Communicated by: Robert Steiner.

Synopsis

Synopsis

Proteasome inhibition results in a significant increase of NPC1 mutant protein levels and an improvement of cholesterol and GM1 trafficking in Niemann Pick C cells carrying different missense mutations.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zampieri, S., Bembi, B., Rosso, N., Filocamo, M., Dardis, A. (2011). Treatment of Human Fibroblasts Carrying NPC1 Missense Mutations with MG132 Leads to an Improvement of Intracellular Cholesterol Trafficking. In: JIMD Reports - Case and Research Reports, 2011/2. JIMD Reports, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2011_49

Download citation

  • DOI: https://doi.org/10.1007/8904_2011_49

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24757-6

  • Online ISBN: 978-3-642-24758-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics