Skip to main content

Advances in Animal Models of Drug Addiction

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Drug addiction is a syndrome of impaired response inhibition and salience attribution, which involves a complex neurocircuitry underlying drug reinforcement, drug craving, and compulsive drug-seeking and drug-taking behaviors despite adverse consequences. The concept of disease stages with transitions from acute rewarding effects to early- and end-stage addiction has had an important impact on the design of nonclinical animal models. This chapter reviews the main advances in nonclinical paradigms that aim to at model (1) positive and negative reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3) reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake. In addition, recent small animal neuroimaging studies and invertebrate models will be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011). Continuous improvement in modeling drug intake, craving, withdrawal symptoms, relapse, and comorbid psychiatric associations is a necessary step to better understand the etiology of the disease and to ultimately foster the discovery, validation and optimization of new efficacious pharmacotherapeutic approaches. The modeling of specific subprocesses or constructs that address clinically defined criteria will ultimately increase our understanding of the disease as a whole. Future research will have to address the questions of whether some of these constructs can be reliably used as outcome measures to assess the effects of a treatment in clinical settings, whether changes in those measures can be a target of therapeutic efforts, and whether they relate to biological markers of traits such as impulsivity, which contribute to increased drug-seeking and may predict binge-like patterns of drug intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-CSRT:

5-Choice serial reaction time

6-OHDA:

6-Hydroxydopamine

AA:

Alko alcohol rats

ADE:

Alcohol deprivation effect

ANA:

Alko non alcohol rats

APA:

American Psychiatric Association

BSR:

Brain stimulation reward

CPA:

Conditioned place aversion

CPP:

Conditioned place preference

CS:

Conditioned stimulus

DA:

Dopamine

DSM-IV:

Diagnostic and statistical manual fourth edition

EMCDDA:

European Monitoring Centre for Drugs and Drug Addiction

fMRI:

Functional magnetic resonance imaging

FR:

Fixed ratio

HAD:

High alcohol drinking rats

HAP:

High alcohol preferring mice

ICD-10:

International classification of diseases and related health problems tenth revision

ICSS:

Intracranial self-stimulation

LAP:

Low alcohol preferring mice

LgA:

Long-access escalation

MK-801:

(5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo hepten-5, 10-imine maleate

NAc:

Nucleus accumbens

NMDA:

N-methyl-d-aspartate

OFC:

Orbitofrontal cortex

PET:

Positron emission tomography

phMRI:

Pharmacological magnetic resonance imaging

PR:

Progressive ratio

SD:

Discriminative stimulus

sP:

Sardinian alcohol-preferring rats

VTA:

Ventral tegmental area

WHO:

World Health Organization

References

  • Aguilar MA, Rodríguez-Arias M, Miñarro J (2009) Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev 59:253–277

    PubMed  Google Scholar 

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    PubMed  CAS  Google Scholar 

  • Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology (Berl) 146:303–312

    CAS  Google Scholar 

  • American Psychiatric Association (1994a) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association (APA), Washington, DC

    Google Scholar 

  • American Psychiatric Association (1994b) Diagnostic and statistical manual of mental disorders, fourth edn (rev). American Psychiatric Association, Washington, DC

    Google Scholar 

  • Andlin-Sobocki P, Rehm J (2005) Cost of addiction in Europe. Eur J Neurol 12(Suppl 1):28–33

    PubMed  Google Scholar 

  • Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J (2005) Cost of disorders of the brain in Europe. Eur J Neurol 12(Suppl 1):1–27

    PubMed  Google Scholar 

  • Anker JJ, Perry JL, Gliddon LA, Carroll ME (2009) Impulsivity predicts the escalation of cocaine self-administration in rats. Pharmacol Biochem Behav 93:343–348

    PubMed  CAS  Google Scholar 

  • Arnold JM, Roberts DCS (1997) A critique of fixed ratio and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    PubMed  CAS  Google Scholar 

  • Bari A, Robbins TW (2011) Animal models of ADHD. Springer, Heidelberg. doi:10.1007/7854_2010_102

    Google Scholar 

  • Bechara A (2003) Risky business: emotion, decision-making, and addiction. J Gambl Stud 19:23–51

    PubMed  Google Scholar 

  • Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126

    PubMed  CAS  Google Scholar 

  • Bickel WK, Marsch LA (2001) Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction 96:73–86

    PubMed  CAS  Google Scholar 

  • Bifone A, Gozzi A (2011) Functional and pharmacological MRI in understanding brain function at a systems level. Springer, Heidelberg. doi:10.1007/7854_2010_103

    Google Scholar 

  • Boettiger CA, Mitchell JM, Tavares VC, Robertson M, Joslyn G, D’Esposito M, Fields HL (2007) Immediate reward bias in humans: fronto-parietal networks and a role for the catechol-O-methyltransferase 158(Val/Val) genotype. J Neurosci 27:14383–14391

    PubMed  CAS  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395

    PubMed  CAS  Google Scholar 

  • Bossert JM, Gray SM, Lu L, Shaham Y (2006) Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 31:2197–2209

    PubMed  CAS  Google Scholar 

  • Brown G, Jackson A, Stephens DN (1998) Effects of repeated withdrawal from chronic ethanol on oral self-administration of ethanol on a progressive ratio schedule. Behav Pharmacol 9:149–161

    PubMed  CAS  Google Scholar 

  • Cador M, Bjijou Y, Stinus L (1995) Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience 65:385–395

    PubMed  CAS  Google Scholar 

  • Castro R, Abreu P, Calzadilla CH, Rodriguez M (1985) Increased or decreased locomotor response in rats following repeated administration of apomorphine depends on dosage interval. Psychopharmacology (Berl) 85:333–339

    CAS  Google Scholar 

  • Cervo L, Carnovali F, Stark JA, Mennini T (2003) Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 28:1150–1159

    PubMed  CAS  Google Scholar 

  • Chiamulera C, Valerio E, Tessari M (1995) Resumption of ethanol-seeking behaviour in rats. Behav Pharmacol 6:32–39

    PubMed  CAS  Google Scholar 

  • Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, O’Brien CP (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monograph 137:73–95

    CAS  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    PubMed  CAS  Google Scholar 

  • Ciccocioppo R, Martin-Fardon R, Weiss F (2002) Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27:391–399

    PubMed  CAS  Google Scholar 

  • Colombo G, Agabio R, Diaz G, Fà M, Lobina C, Reali R, Gessa GL (1997) Sardinian alcohol-preferring rats prefer chocolate and sucrose over ethanol. Alcohol 14:611–615

    PubMed  CAS  Google Scholar 

  • Colpaert FC (1999) Drug discrimination in neurobiology. Pharmacol Biochem Behav 64:337–345

    PubMed  CAS  Google Scholar 

  • Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167

    PubMed  Google Scholar 

  • Cooper A, Barnea-Ygael N, Levy D, Shaham Y, Zangen A (2007) A conflict rat model of cue-induced relapse to cocaine seeking. Psychopharmacology (Berl) 194:117–125

    CAS  Google Scholar 

  • Cox SM, Benkelfat C, Dagher A, Delaney JS, Durand F, McKenzie SA, Kolivakis T, Casey KF, Leyton M (2009) Striatal dopamine responses to intranasal cocaine self-administration in humans. Biol Psychiatry 65:846–850

    PubMed  CAS  Google Scholar 

  • Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247

    PubMed  CAS  Google Scholar 

  • Crombag HS, Shaham Y (2002) Renewal of drug-seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116:169–173

    PubMed  CAS  Google Scholar 

  • Crombag HS, Grimm JW, Shaham Y (2002) Effect of dopamine receptor antagonists on renewal of cocaine seeking by reexposure to drug-associated contextual cues. Neuropsychopharmacology 27:1006–1015

    PubMed  CAS  Google Scholar 

  • Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci 363:3233–3243

    PubMed  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Peña Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    PubMed  CAS  Google Scholar 

  • Dalley JW, Fryer TD, Aigbirhio FI, Brichard L, Richards HK, Hong YT, Baron JC, Everitt BJ, Robbins TW (2009) Modelling human drug abuse and addiction with dedicated small animal positron emission tomography. Neuropharmacology 56(Suppl 1):9–17

    PubMed  CAS  Google Scholar 

  • Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666

    PubMed  CAS  Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl) 75:134–143

    Google Scholar 

  • de Wit H, Wise RA (1977) Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol 31:195–203

    PubMed  Google Scholar 

  • Debiec J, LeDoux JE (2006) Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD. Ann N Y Acad Sci 1071:521–524

    PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    PubMed  CAS  Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308

    PubMed  CAS  Google Scholar 

  • Dom G, Sabbe B, Hulstijn W, van den Brink W (2005) Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry 187:209–220

    PubMed  CAS  Google Scholar 

  • Duka T, Crews F (2009) Impulsivity: its genetic, neurochemical and brain substrate determinants and the risks it entails for aberrant motivated behavior and psychopathology. Pharmacol Biochem Behav 93:197–198

    PubMed  CAS  Google Scholar 

  • Edwards G (1986) The alcohol dependence syndrome: a concept as stimulus to enquiry. Br J Addict 81:171–183

    PubMed  CAS  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    PubMed  CAS  Google Scholar 

  • Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    CAS  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl) 128:408–412

    CAS  Google Scholar 

  • Eriksson K (1968) Genetic selection for voluntary alcohol consumption in the albino rat. Science 159:739–741

    PubMed  CAS  Google Scholar 

  • Ersche KD, Fletcher PC, Lewis SJ, Clark L, Stocks-Gee G, London M, Deakin JB, Robbins TW, Sahakian BJ (2005) Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology (Berl) 180:612–623

    CAS  Google Scholar 

  • Ettenberg A (2009) The runway model of drug self-administration. Pharmacol Biochem Behav 91:271–277

    PubMed  CAS  Google Scholar 

  • Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl) 78:204–209

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2001) Second order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking basis behavior. Psychopharmacology (Berl) 153:17–30

    Google Scholar 

  • Everitt BJ, Hutcheson DM, Ersche KD, Pelloux Y, Dalley JW, Robbins TW (2007) The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 1121:576–597

    PubMed  CAS  Google Scholar 

  • Falk JL, Lau CE (1995) Stimulus control of addictive behavior: persistence in the presence and absence of a drug. Pharmacol Biochem Behav 50:71–75

    PubMed  CAS  Google Scholar 

  • Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, Xu XZ (2006) A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127:621–633

    PubMed  CAS  Google Scholar 

  • Fuchs RA, Tran-Nguyen LT, Specio SE, Groff RS, Neisewander JL (1998) Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology (Berl) 135:151–160

    CAS  Google Scholar 

  • Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30:296–309

    PubMed  CAS  Google Scholar 

  • Fuchs RA, Lasseter HC, Ramirez DR, Xie X (2008) Relapse to drug seeking following prolonged abstinence: the role of environmental stimuli. Drug Discov Today Dis Models 5:251–258

    PubMed  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798

    PubMed  CAS  Google Scholar 

  • Gardner EL (2000) What we have learned about addiction from animal models of drug self-administration. Am J Addict 9:285–313

    PubMed  CAS  Google Scholar 

  • Gardner EL (2005) Brain reward mechanisms. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: a comprehensive textbook, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 48–97

    Google Scholar 

  • Goldberg SR (1973) Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J Pharmacol Exp Ther 186:18–30

    PubMed  CAS  Google Scholar 

  • Goldberg SR, Tang AH (1977) Behavior maintained under second-order schedules of intravenous morphine injection in squirrel and rhesus monkeys. Psychopharmacology (Berl) 51:235–242

    CAS  Google Scholar 

  • Goldstein RZ, Tomasi D, Rajaram S, Cottone LA, Zhang L, Maloney T, Telang F, Alia-Klein N, Volkow ND (2007) Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144:1153–1159

    PubMed  CAS  Google Scholar 

  • Grahame NJ, Li TK, Lumeng L (1999) Selective breeding for high and low alcohol preference in mice. Behav Genet 29:47–57

    PubMed  CAS  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045

    PubMed  CAS  Google Scholar 

  • Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412:141–142

    PubMed  CAS  Google Scholar 

  • Grimm JW, Shaham Y, Hope BT (2002) Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav Pharmacol 13:379–388

    PubMed  CAS  Google Scholar 

  • Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    PubMed  CAS  Google Scholar 

  • Haney M, Spealman R (2008) Controversies in translational research: drug self-administration. Psychopharmacology (Berl) 199:403–419

    CAS  Google Scholar 

  • Heberlein U, Tsai LT, Kapfhamer D, Lasek AW (2009) Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 56(Suppl 1):97–106

    PubMed  CAS  Google Scholar 

  • Heidbreder CA, Thompson AC, Shippenberg TS (1996) Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine. J Pharmacol Exp Ther 278:490–502

    PubMed  CAS  Google Scholar 

  • Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789

    PubMed  Google Scholar 

  • Heyser CJ, Schulteis G, Koob GF (1997) Increased ethanol self-administration after a period of imposed ethanol deprivation in rats trained in a limited access paradigm. Alcohol Clin Exp Res 21:784–791

    PubMed  CAS  Google Scholar 

  • Hoffman DC, Wise RA (1992) Locomotor-activating effects of the D2 agonist bromocriptine show environment-specific sensitization following repeated injections. Psychopharmacology (Berl) 107:277–284

    CAS  Google Scholar 

  • Hölter SM, Engelmann M, Kirschke C, Liebsch G, Landgraf R, Spanagel R (1998) Long-term ethanol self-administration with repeated ethanol deprivation episodes changes ethanol drinking pattern and increases anxiety-related behavior during ethanol deprivation in rats. Behav Pharmacol 9:41–48

    PubMed  Google Scholar 

  • Hölter SM, Linthorst ACE, Reul JMHM, Spanagel R (2000) Withdrawal symptoms in a long-term model of voluntary alcohol drinking in wistar rats. Pharmacol Biochem Behav 66:143–151

    PubMed  Google Scholar 

  • Horger BA, Shelton K, Schenk S (1990) Preexposure sensitizes rats to the rewarding effects of cocaine. Pharmacol Biochem Behav 37:707–711

    PubMed  CAS  Google Scholar 

  • Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    PubMed  CAS  Google Scholar 

  • Johnson PM, Hollander JA, Kenny PJ (2008) Decreased brain reward function during nicotine withdrawal in C57BL6 mice: evidence from intracranial self-stimulation (ICSS) studies. Pharmacol Biochem Behav 90:409–415

    PubMed  CAS  Google Scholar 

  • Kagan J (1966) Reflection-impulsivity: the generality and dynamics of conceptual tempo. J Abnorm Psychol 71:17–24

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Pharmacol Exp Ther 245:1095–1102

    PubMed  CAS  Google Scholar 

  • Katner SN, Magalong JG, Weiss F (1999) Reinstatement of alcohol-seeking behavior by drug-associated discriminative stimuli after prolonged extinction in the rat. Neuropsychopharmacology 20:471–479

    PubMed  CAS  Google Scholar 

  • Knoch D, Fehr E (2008) Resisting the power of temptations: the right prefrontal cortex and self-control. Ann N Y Acad Sci 1104:123–134

    Google Scholar 

  • Krishnan-Sarin S, Rosen MI, O’Malley SS (1999) Naloxone challenge in smokers. Preliminary evidence of an opioid component in nicotine dependence. Arch Gen Psychiatry 56:663–668

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal D (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    PubMed  CAS  Google Scholar 

  • Lê AD, Quan B, Juzytch W, Fletcher PJ, Joharchi N, Shaham Y (1998) Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacology (Berl) 135:169–174

    Google Scholar 

  • Lejuez CW, Bornovalova MA, Reynolds EK, Daughters SB, Curtin JJ (2007) Risk factors in the relationship between gender and crack/cocaine. Exp Clin Psychopharmacol 15:165–175

    PubMed  CAS  Google Scholar 

  • Leyton M (2007) Conditioned and sensitized responses to stimulant drugs in humans. Prog Neuropsychopharmacol Biol Psychiatry 31:1601–1613

    PubMed  CAS  Google Scholar 

  • Li TK, Lumeng L, Doolittle DP (1993) Selective breeding for alcohol preference and associated responses. Behav Genet 23:163–170

    PubMed  CAS  Google Scholar 

  • Li SM, Ren YH, Zheng JW (2002) Effect of 7-nitroindazole on drug-priming reinstatement of d-methamphetamine-induced conditioned place preference. Eur J Pharmacol 443:205–206

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    PubMed  CAS  Google Scholar 

  • Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 22:7856–7861

    PubMed  CAS  Google Scholar 

  • Liu Y, Roberts DC, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22:195–200

    PubMed  Google Scholar 

  • Logan G, Schachar R, Tannock R (1997) Impulsivity and inhibitory control. Psychol Sci 8:60–64

    Google Scholar 

  • London ED, Ernst M, Grant S, Bonson K, Weinstein A (2000) Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 10:334–342

    PubMed  CAS  Google Scholar 

  • Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107:9–19

    PubMed  CAS  Google Scholar 

  • Lu L, Ceng X, Huang M (2000) Corticotropin-releasing factor receptor type I mediates stress-induced relapse to opiate dependence in rats. Neuroreport 11:2373–2378

    PubMed  CAS  Google Scholar 

  • Lu L, Grimm JW, Hope BT, Shaham Y (2004) Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47(Suppl 1):214–226

    PubMed  CAS  Google Scholar 

  • Lu L, Chen H, Su W, Ge X, Yue W, Su F, Ma L (2005) Role of withdrawal in reinstatement of morphine-conditioned place preference. Psychopharmacology (Berl) 181:90–100

    CAS  Google Scholar 

  • Ma YY, Chu NN, Guo CY, Han JS, Cui CL (2007) NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol 203:309–319

    PubMed  CAS  Google Scholar 

  • Maier DM, Pohorecky LA (1989) The effect of repeated withdrawal episodes on subsequent withdrawal severity in ethanol-treated rats. Drug Alcohol Depend 23:103–110

    PubMed  CAS  Google Scholar 

  • Malin DH (2001) Nicotine dependence: studies with a laboratory model. Pharmacol Biochem Behav 70:551–559

    PubMed  CAS  Google Scholar 

  • Malin DH, Goyarzu P (2009) Rodent models of nicotine withdrawal syndrome. Handb Exp Pharmacol 192:401–434

    PubMed  CAS  Google Scholar 

  • Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    PubMed  CAS  Google Scholar 

  • Malin DH, Lake JR, Carter VA, Cunningham JS, Wilson OB (1993) Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology (Berl) 112:339–342

    CAS  Google Scholar 

  • Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, Huang Y, Cooper TB, Fischman MW, Kleber HD, Laruelle M (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164:622–629

    PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    PubMed  Google Scholar 

  • McCleery M, Harvey AG (2004) Integration of psychological and biological approaches to trauma memory: implications for pharmacological prevention of PTSD. J Trauma Stress 17:485–496

    PubMed  Google Scholar 

  • McCown J, Breese GR (1990) Multiple withdrawals from chronic ethanol kindles inferior collicular seizure activity: evidence for kindling of seizures associated with alcoholism. Alcohol Clin Exp Res 14:394–399

    PubMed  CAS  Google Scholar 

  • McFarland K, Ettenberg A (1997) Reinstatement of drug-seeking behavior produced by heroin-predictive environmental stimuli. Psychopharmacology (Berl) 131:86–92

    CAS  Google Scholar 

  • Meyer RE, Mirin SM (1979) The heroin stimulus: implications for a theory of addiction. Plenum, New York

    Google Scholar 

  • Miczek KA, Yap JJ, Covington HE 3rd (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–128

    PubMed  CAS  Google Scholar 

  • Mishkin JM (1964) Perseveration of central sets after frontal lesions in monkeys. In: Mishkin JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 219–241

    Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 160:290–298

    CAS  Google Scholar 

  • Möller C, Wiklund L, Thorsell A, Hyytiä P, Heilig M (1997) Decreased measures of experimental anxiety in rats bred for high alcohol preference. Alcohol Clin Exp Res 21:656–660

    PubMed  Google Scholar 

  • Morgan D, Roberts DCS (2004) Sensitization to the reinforcing effects of cocaine following binge-abstinent self-administration. Neurosci Biobehav Rev 27:803–812

    PubMed  CAS  Google Scholar 

  • Morgan D, Liu Y, Roberts DC (2006) Rapid and persistent sensitization to the reinforcing effects of cocaine. Neuropsychopharmacology 31:121–128

    PubMed  CAS  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    PubMed  CAS  Google Scholar 

  • Narendran R, Martinez D (2008) Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 62:851–869

    PubMed  CAS  Google Scholar 

  • O’Dell LE, Khroyan TV (2009) Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol Biochem Behav 91:481–488

    PubMed  Google Scholar 

  • O’Dell LE, Torres OV, Natividad LA, Tejeda HA (2007) Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats. Neurotoxicol Teratol 29:17–22

    PubMed  Google Scholar 

  • O’Kane CJ (2011) Drosophila as a model organism for the study of neuropsychiatric disorders. Springer, Heidelberg. doi:10.1007/7854_2010_110

    Google Scholar 

  • Obernier JA, White AM, Swartzwelder HS, Crews FT (2002) Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 72:521–532

    PubMed  CAS  Google Scholar 

  • Oleson EB, Roberts DCS (2008) Parsing the addiction phenomenon: self-administration procedures modeling enhanced motivation for drug and escalation of drug intake. Drug Discov Today Dis Models 5:217–226

    PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27:4819–4825

    PubMed  CAS  Google Scholar 

  • Oswald LM, Wong DF, McCaul M, Zhou Y, Kuwabara H, Choi L, Brasic J, Wand GS (2005) Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30:821–832

    PubMed  CAS  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    PubMed  CAS  Google Scholar 

  • Panagis G, Kastellakis A, Spyraki C, Nomikos G (2000) Effects of methyllycaconitine (MLA), an alpha 7 nicotinic receptor antagonist, on nicotine- and cocaine-induced potentiation of brain stimulation reward. Psychopharmacology (Berl) 149:388–396

    CAS  Google Scholar 

  • Parsons LH, Justice JB Jr (1993) Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area, and dorsal raphe nucleus following repeated cocaine administration. J Neurochem 61:1611–1619

    PubMed  CAS  Google Scholar 

  • Patrick SL, Thompson TL, Walker JM, Patrick RL (1991) Concomitant sensitization of amphetamine-induced behavioral stimulation and in vivo dopamine release from rat caudate nucleus. Brain Res 538:343–346

    PubMed  CAS  Google Scholar 

  • Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774

    PubMed  CAS  Google Scholar 

  • Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl) 103:480–492

    CAS  Google Scholar 

  • Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology (Berl) 200:1–26

    CAS  Google Scholar 

  • Perry JL, Larson EB, German JP, Madden GJ, Carroll ME (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology (Berl) 178:193–201

    CAS  Google Scholar 

  • Perry JL, Nelson SE, Carroll ME (2008) Impulsive choice as a predictor of acquisition of IV cocaine self-administration and reinstatement of cocaine-seeking behavior in male and female rats. Exp Clin Psychopharmacol 16:165–177

    PubMed  Google Scholar 

  • Pettit HO, Pan HT, Parsons LH, Justice JB Jr (1990) Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J Neurochem 55:798–804

    PubMed  CAS  Google Scholar 

  • Post RM, Rose H (1976) Increasing effects of repetitive cocaine administration in the rat. Nature 260:731–732

    PubMed  CAS  Google Scholar 

  • Poulos CX, Le AD, Parker JL (1995) Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behav Pharmacol 6:810–814

    PubMed  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    PubMed  Google Scholar 

  • Rahman S, Sahakian BJ, Hodges JR, Rogers RD, Robbins TW (1999) Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain 122:1469–1493

    PubMed  Google Scholar 

  • Reynolds B (2006) A review of delay-discounting research with humans: relations to drug use and gambling. Behav Pharmacol 17:651–667

    PubMed  Google Scholar 

  • Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Armario A, Minarro J (2006) Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology (Berl) 185:459–470

    CAS  Google Scholar 

  • Richardson NR, Roberts DCS (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    PubMed  CAS  Google Scholar 

  • Rimondini R, Arlinde C, Sommer W, Heilig M (2002) Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 16:27–35

    PubMed  CAS  Google Scholar 

  • Roberts DCS (1989) Breaking points on a progressive ratio schedule reinforced by intravenous apomorphine increase daily following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 32:43–47

    PubMed  CAS  Google Scholar 

  • Roberts DCS, Zito KA (1987) Interpretation of lesion effects on stimulant self-administration. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, New York, pp 87–103

    Google Scholar 

  • Roberts AJ, Heyser CJ, Cole M, Griffin P, Koob GF (2000) Excessive ethanol drinking following a history of dependence: animal model of allostasis. Neuropsychopharmacology 22:581–594

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363:3137–3146

    PubMed  Google Scholar 

  • Robinson TE, Jurson PA, Bennett JA, Bentgen KM (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res 462:211–222

    PubMed  CAS  Google Scholar 

  • Rodd-Henricks ZA, Bell RL, Kuc KA, Murphy JM, McBride WJ, Lumeng L, Li TK (2001) Effects of concurrent access to multiple ethanol concentrations and repeated deprivations on alcohol intake of alcohol-preferring rats. Alcohol Clin Exp Res 25:1140–1150

    PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    PubMed  CAS  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    PubMed  CAS  Google Scholar 

  • Rowlett JK (2000) A labor-supply analysis of cocaine self-administration under progressive-ratio schedules: antecedents, methodologies, and perspectives. Psychopharmacology (Berl) 153:1–16

    CAS  Google Scholar 

  • Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF (2006) Separate neural pathways process different decision costs. Nat Neurosci 9:1161–1168

    PubMed  CAS  Google Scholar 

  • Rush CR, Essman WD, Simpson CA, Baker RW (2001) Reinforcing and subject-rated effects of methylphenidate and d-amphetamine in non-drug-abusing humans. J Clin Psychopharmacol 21:273–286

    PubMed  CAS  Google Scholar 

  • Sanchez CJ, Sorg BA (2001) Conditioned fear stimuli reinstate cocaine-induced conditioned place preference. Brain Res 908:86–92

    PubMed  CAS  Google Scholar 

  • Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA (2003) Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119:497–505

    PubMed  CAS  Google Scholar 

  • Sato M (1986) Acute exacerbation of methamphetamine psychosis and lasting dopaminergic supersensitivity–a clinical survey. Psychopharmacol Bull 22:751–756

    PubMed  CAS  Google Scholar 

  • Sax KW, Strakowski SM (2001) Behavioral sensitization in humans. J Addict Dis 20:55–65

    PubMed  CAS  Google Scholar 

  • Schafer WR (2004) Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Neuropharmacology 47(Suppl 1):123–131

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Shaham Y (2008) The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 63:256–262

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Saddoris MP, Stalnaker TA (2007) Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann N Y Acad Sci 1121:320–335

    PubMed  Google Scholar 

  • Schummers J, Yu HB, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007) Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn Reson Imaging 25:811–820

    PubMed  CAS  Google Scholar 

  • See RE (2002) Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol Biochem Behav 71:517–529

    PubMed  CAS  Google Scholar 

  • See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526:140–146

    PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R (1992a) In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment. Brain Res 571:330–337

    PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R (1992b) Repeated cocaine administration induces behavioral sensitization and corresponding decreased extracellular dopamine responses in caudate and accumbens. Brain Res 577:351–355

    PubMed  CAS  Google Scholar 

  • Shaham Y, Shalev U, Lu L, de Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    CAS  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Heidbreder C (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J Pharmacol Exp Ther 273:808–815

    PubMed  CAS  Google Scholar 

  • Shoblock JR, Wichmann J, Maidment NT (2005) The effect of a systemically active ORL-1 agonist, Ro 64-6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology 49:439–446

    PubMed  CAS  Google Scholar 

  • Silverman PB (1991) Sensitization and conditioned rotation: apomorphine, quinpirole and SKF-38393 compared. NeuroReport 2:669–672

    PubMed  CAS  Google Scholar 

  • Sirotin YB, Das A (2009) Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457:475–479

    PubMed  CAS  Google Scholar 

  • Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705

    PubMed  CAS  Google Scholar 

  • Spanagel R, Hölter SM (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol Alcohol 34:231–243

    PubMed  CAS  Google Scholar 

  • Spyraki C, Nomikos GG, Varonos DD (1987) Intravenous cocaine-induced place preference: attenuation by haloperidol. Behav Brain Res 26:57–62

    PubMed  CAS  Google Scholar 

  • Stafford D, LeSage MG, Glowa JR (1998) Progressive-ratio schedules of drug delivery in the analysis of drug self-administration: a review. Psychopharmacology (Berl) 139:169–184

    CAS  Google Scholar 

  • Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312

    PubMed  CAS  Google Scholar 

  • Stoker AK, Semenova S, Markou A (2008) Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Neuropharmacology 54:1223–1232

    PubMed  CAS  Google Scholar 

  • Stoops WW, Glaser PE, Fillmore MT, Rush CR (2004) Reinforcing, subject-rated, performance and physiological effects of methylphenidate and d-amphetamine in stimulant abusing humans. J Psychopharmacol 18:534–543

    PubMed  CAS  Google Scholar 

  • Stoops WW, Lile JA, Robbins CG, Martin CA, Rush CR, Kelly TH (2007) The reinforcing, subject-rated, performance, and cardiovascular effects of d-amphetamine: Influence of sensation-seeking status. Addict Behav 32:1177–1188

    PubMed  Google Scholar 

  • Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated d-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177

    PubMed  CAS  Google Scholar 

  • Strakowski SM, Sax KW, Setters MJ, Keck PE Jr (1996) Enhanced response to repeated d-amphetamine challenge: evidence for behavioral sensitization in humans. Biol Psychiatry 40:872–880

    PubMed  CAS  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2009) Results from the 2008 national survey on drug use and health: national findings (Office of Applied Studies, NSDUH Series H-36, HHS Publication No. SMA 09-4434). Rockville, MD

    Google Scholar 

  • Suzuki T, Ise Y, Tsuda M, Maeda J, Misawa M (1996) Mecamylamine-precipitated nicotine-withdrawal aversion in rats. Eur J Pharmacol 314:281–284

    PubMed  CAS  Google Scholar 

  • Szechtman H, Talangbayan H, Eilam D (1993) Environmental and behavioral components of sensitization induced by the dopamine agonist quinpirole. Behav Pharmacol 4:405–410

    PubMed  CAS  Google Scholar 

  • Tait DS, Brown VJ (2007) Difficulty overcoming learned non-reward during reversal learning in rats with ibotenic acid lesions of orbital prefrontal cortex. Ann N Y Acad Sci 1121:407–420

    PubMed  CAS  Google Scholar 

  • Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 56(Suppl 1):186–195

    PubMed  CAS  Google Scholar 

  • Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O’Dell LE, Neisewander JL (1998) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19:48–59

    PubMed  CAS  Google Scholar 

  • Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275

    PubMed  CAS  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    PubMed  CAS  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    PubMed  CAS  Google Scholar 

  • Uhl GR, Grow RW (2004) The burden of complex genetics in brain disorders. Arch Gen Psychiatry 61:223–229

    PubMed  Google Scholar 

  • Vezina P (1993) Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res 605:332–337

    PubMed  CAS  Google Scholar 

  • Vezina P, Leyton M (2009) Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56(Suppl 1):160–168

    PubMed  CAS  Google Scholar 

  • Vezina P, Pierre PJ, Lorrain DS (1999) The effect of previous exposure to amphetamine on drug-induced locomotion and self-administration of a low dose of the drug. Psychopharmacology (Berl) 147:125–134

    CAS  Google Scholar 

  • Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22:4654–4662

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N (1999) Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 156:1440–1443

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78:610–624

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    PubMed  CAS  Google Scholar 

  • von der Goltz C, Vengeliene V, Bilbao A, Perreau-Lenz S, Pawlak CR, Kiefer F, Spanagel R (2009) Cue-induced alcohol-seeking behaviour is reduced by disrupting the reconsolidation of alcohol-related memories. Psychopharmacology (Berl) 205:389–397

    Google Scholar 

  • Wang J, Fang Q, Liu Z, Lu L (2006) Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology (Berl) 185:19–28

    CAS  Google Scholar 

  • Weiss F, Paulus MP, Lorang MT, Koob GF (1992) Increases in extracellular dopamine in the nucleus accumbens by cocaine are inversely related to basal levels: effects of acute and repeated administration. J Neurosci 12:4372–4380

    PubMed  CAS  Google Scholar 

  • Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA 97:4321–4326

    PubMed  CAS  Google Scholar 

  • Weiss F, Martin-Fardon R, Ciccocioppo R, Kerr TM, Smith DL, Ben-Shahar O (2001) Enduring resistance to extinction of cocaine-seeking behavior induced by drug-related cues. Neuropsychopharmacology 25:361–372

    PubMed  CAS  Google Scholar 

  • Weissenborn R, Yackey M, Koob GF, Weiss F (1995) Measures of cocaine-seeking behavior using a multiple schedule of food and drug self-administration in rats. Drug Alcohol Depend 38:237–246

    PubMed  CAS  Google Scholar 

  • Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behavior under a second order schedule of reinforcement. Psychopharmacology (Berl) 127:213–224

    CAS  Google Scholar 

  • Whiteside SP, Lynam DR (2001) The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Pers Individ Dif 30:669–689

    Google Scholar 

  • Willner P (1991) Methods for assessing the validity of animal models of human psychopathology. In: Boulton GBA, Martin-Iverson M (eds) Neuromethods: animal models in psychiatry. Humana, Clifton, NJ, pp 1–23

    Google Scholar 

  • Wise RA, Rompré P-P (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    PubMed  CAS  Google Scholar 

  • Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178

    PubMed  CAS  Google Scholar 

  • Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70:77–94

    PubMed  CAS  Google Scholar 

  • Wong DF, Kuwabara H, Schretlen DJ, Bonson KR, Zhou Y, Nandi A, Brasic JR, Kimes AS, Maris MA, Kumar A, Contoreggi C, Links J, Ernst M, Rousset O, Zukin S, Grace AA, Lee JS, Rohde C, Jasinski DR, Gjedde A, London ED (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31:2716–2727

    PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1991) International classification of diseases (ICD-10). World Health Organization, Geneva

    Google Scholar 

  • Yahyavi-Firouz-Abadi N, See RE (2009) Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacol Ther 124:235–247

    PubMed  CAS  Google Scholar 

  • Yap JJ, Miczek KA (2008) Stress and rodent models of drug addiction: role of VTA–accumbens–PFC–amygdala circuit. Drug Discov Today Dis Models 5:259–270

    PubMed  Google Scholar 

  • Yokel RA, Wise RA (1975) Increased lever pressing for amphetamine after pimozide in rats: implication for a dopamine theory of reward. Science 187:547–549

    PubMed  CAS  Google Scholar 

  • Yokel RA, Wise RA (1976) Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology (Berl) 48:311–318

    CAS  Google Scholar 

  • Zernig G, Ahmed SH, Cardinal RN, Morgan D, Acquas E, Foltin RW, Vezina P, Negus SS, Crespo JA, Stöckl P, Grubinger P, Madlung E, Haring C, Kurz M, Saria A (2007) Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology 80:65–119

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Heidbreder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heidbreder, C. (2011). Advances in Animal Models of Drug Addiction. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_107

Download citation

Publish with us

Policies and ethics