Skip to main content

GABAA Receptor α2/α3 Subtype-Selective Modulators as Potential Nonsedating Anxiolytics

  • Chapter
  • First Online:
Behavioral Neurobiology of Anxiety and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 2))

Abstract

Nonselective benzodiazepines exert their pharmacological effects via GABAA receptors containing either an α1, α2, α3, or α5 subunit. The use of subtype-selective tool compounds along with transgenic mice has formed the conceptual framework for defining the requirements of subtype-selective compounds with potentially novel pharmacological profiles. More specifically, compounds which allosterically modulate the α2 and/or α3 subtypes but are devoid of, or have much reduced, effects at the α1 subtype are hypothesized to be anxioselective (i.e., anxiolytic but devoid of sedation). Accordingly, three compounds, MRK-409, TPA023 and TPA023B, which selectively potentiated the effects of GABA at the α2 and α3 compared to α1 subtypes were progressed into man. All three compounds behaved as nonsedating anxiolytics in preclinical (rodent and primate) species but, surprisingly, MRK-409 produced sedation in man at relatively low levels of occupancy (<10%). This sedation liability of MRK-409 in man was attributed to its weak partial agonist efficacy at the α1 subtype since both TPA023 and TPA023B lacked any α1 efficacy and did not produce overt sedation even at relatively high levels of occupancy (≥50%). The anxiolytic efficacy of TPA023 was evaluated in Generalized Anxiety Disorder and although these clinical trials were terminated early due to preclinical toxicity issues, the combined data from these incomplete studies demonstrated an anxiolytic-like effect of TPA023. This compound also showed a trend to increase cognitive performance in a small group of schizophrenic subjects and is currently under further evaluation of its cognition-enhancing effects in schizophrenia as part of the TURNS initiative. In contrast, the fate of the back-up clinical candidate TPA023B has not been publicly disclosed. At the very least, these data indicate that the pharmacological profile of compounds that differentially modulate specific populations of GABAA receptors is distinct from classical benzodiazepines and should encourage further preclinical and clinical investigation of such compounds, with the caveat that, as exemplified by MRK-409, the preclinical profile might not necessarily translate into man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2006) NME digest. Drug News Perspect 19:417–425

    Google Scholar 

  • Ashton H (2005) The diagnosis and management of benzodiazepine dependence. Curr Opin Psychiatry 18:249–255

    Article  PubMed  Google Scholar 

  • Atack JR (2003) Anxioselective compounds acting at the GABAA receptor benzodiazepine binding site. Curr Drug Targets – CNS Neurol Disorders 2:213–232

    Google Scholar 

  • Atack JR (2005) The benzodiazepine binding site of GABAA receptors as a target for the development of novel anxiolytics. Expert Opin Investig Drugs 14:601–618

    Article  PubMed  CAS  Google Scholar 

  • Atack JR (2009a) GABAA receptor subtype-selective modulators. I. α2/α3-selective agonists as non-sedating anxiolytics. Curr Top Med Chem (in press)

    Google Scholar 

  • Atack JR (2009b) GABAA receptor subtype-selective modulators. II. α5-selective inverse agonists for cognition enhancement. Curr Top Med Chem (in press)

    Google Scholar 

  • Atack JR, Hutson PH, Collinson N, Marshall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR (2005) Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors. Br J Pharmacol 144:357–366

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006a) L-655, 708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology 51:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Wafford KA, Tye SJ, Cook SM, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, Ragan I, Kerby J, Street L, Carling R, Castro JL, Whiting P, Dawson GR, McKernan RM (2006b) TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H–1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for α2- and α3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. J Pharmacol Exp Ther 316:410–422

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Eng WS, Gibson RE, Ryan C, Francis B, Sohal B, Dawson GR, Hargreaves RJ, Burns HD (2009a) The plasma-occupancy relationship of the novel GABAA receptor benzodiazepine site ligand, α5IA, is similar in rats and primates. Br J Pharmacol 157:796–803

    Google Scholar 

  • Atack JR, Hallett D, Tye S, Wafford KA, Ryan C, Sanabria-Bohórquez SM, Eng W, Gibson RE, Burns HD, Dawson GR, Carling RW, Street LJ, Pike A, De Lepeleire I, Van Laere K, Bormans G, de Hoon JN, Van Hecken A, McKernan RM, Murphy MG, Hargreaves RJ (2009b) Preclinical and clinical pharmacology of TPA023B, a GABAA receptor α2/α3 subtype-selective agonist. J Psychopharmacol (in press)

    Google Scholar 

  • Atack JR, Wafford KA, Street LJ, Dawson GR, Tye S, McKernan RM, Agrawal NGB, van Laere K, Bormans G, Sanabria-Bohórquez SM, De Lepeleire I, de Hoon JN, Van Hecken A, Burns HD, McKernan RM, Murphy MG, Hargreaves RJ (2009c) MRK-409, a GABAA receptor subtype-selective agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in man. J Psychopharmacol (in press)

    Google Scholar 

  • Ator NA (2005) Contributions of GABAA receptor subtype selectivity to abuse liability and dependence potential of pharmacological treatments for anxiety and sleep disorders. CNS Spectr 10:31–39

    PubMed  Google Scholar 

  • Ator NA, Atack JR, Hargreaves RJ, Burns HD, Dawson GR (2009) Reducing abuse liability of GABAA/Benzodiazepine ligands via selective efficacy at α1 and α2/3 subtypes. J Pharmacol Exp Therap (in press)

    Google Scholar 

  • Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J, Gasser R, Moreau JL, Wettstein JG, Buettelmann B, Knust H, Thomas AW, Trube G, Hernandez MC (2008) RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors. Psychopharmacology 202:207–223

    Article  PubMed  Google Scholar 

  • Benson JA, Löw K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant γ-aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated α-subunits. FEBS Lett 431:400–404

    Article  PubMed  CAS  Google Scholar 

  • Blackaby WP, Atack JR, Bromidge F, Castro JL, Goodacre SC, Hallett DJ, Lewis RT, Marshall GR, Pike A, Smith AJ, Street LJ, Tattersall FD, Wafford KA (2006) Imidazo[1,2-a]pyrimidines as functionally selective GABAA ligands. Bioorg Med Chem Lett 16:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    Article  PubMed  CAS  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  PubMed  CAS  Google Scholar 

  • Brouillet E, Chavoix C, Bottlaender M, Khalili-Varasteh M, Hantraye P, Fournier D, Dodd RH, Mazière M (1991) In vivo bidirectional modulatory effect of benzodiazepine receptor ligands on GABAergic transmission evaluated by positron emission tomography in non-human primates. Brain Res 557:167–176

    Article  PubMed  CAS  Google Scholar 

  • Carling RW, Madin A, Guiblin A, Russell MGN, Moore KW, Mitchinson A, Sohal B, Pike A, Cook SM, Ragan CI, McKernan RM, Quirk K, Ferris P, Marshall G, Thompson SA, Wafford KA, Dawson GR, Atack JR, Harrison T, Castro LJ, Street LJ (2005) 7-(1, 1-Dimethylethyl)-6-(2-ethyl-2H–1, 2, 4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1, 2, 4-triazolo[4, 3-b]pyridazine: a functionally selective γ-aminobutyric acidA (GABAA) α2/α3-subtype selective agonist that exhibits potent anxiolytic activity but is not sedating in animal models. J Med Chem 48:7089–7092

    Article  PubMed  CAS  Google Scholar 

  • Clayton T, Chen JL, Ernst M, Richter L, Cromer BA, Morton CJ, Ng H, Kaczorowski CC, Helmstetter FJ, Furtmüller R, Ecker G, Parker MW, Sieghart W, Cook JM (2007) An updated unified pharmacophore model of the benzodiazepine binding site on γ-aminobutyric acida receptors: correlation with comparative models. Curr Med Chem 14:2755–2775

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. Adv Biochem Psychopharmacol 14:113–130

    PubMed  CAS  Google Scholar 

  • Cumming RG, Le Couteur DG (2003) Benzodiazepines and risk of hip fractures in older people: a review of the evidence. CNS Drugs 17:825–837

    Article  PubMed  CAS  Google Scholar 

  • Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345

    Article  PubMed  CAS  Google Scholar 

  • de Haas SL, de Visser SJ, van der Post JP, de Smet M, Schoemaker RC, Rijnbeek B, Cohen AF, Vega JM, Agrawal NGB, Goel TV, Simpson RC, Pearson LK, Li S, Hesney M, Murphy MG, van Gerven JMA (2007) Pharmacodynamic and pharmacokinetic effects of TPA023, a GABAA α2,3 subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers. J Psychopharmacol 21:374–383

    Article  PubMed  Google Scholar 

  • de Haas SL, de Visser SJ, van der Post JP, Schoemaker RC, van Dyck K, Murphy MG, de Smet M, Vessey LK, Ramakrishnan R, Xue L, Cohen AF, van Gerven JMA (2008) Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABAA α2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers. J Psychopharmacol 22:24–32

    Article  PubMed  Google Scholar 

  • De Silva JAF, Puglisi CV (1970) Determination of medazepam (nobrium), diazepam (valium) and their major biotransformation products in blood and urine by electron capture gas-liquid chromatography. Anal Chem 42:1725–1736

    Article  PubMed  Google Scholar 

  • Dias R, Sheppard WFA, Fradley RL, Garrett EM, Stanley JL, Tye SJ, Goodacre S, Lincoln RJ, Cook SM, Conley R, Hallett D, Humphries AC, Thompson SA, Wafford KA, Street LJ, Castro JL, Whiting PJ, Rosahl TW, Atack JR, McKernan RM, Dawson GR, Reynolds DS (2005) Evidence for a significant role of α3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25:10682–10688

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Bruckner S, Boresch S, Sieghart W (2005) Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol 68:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Goodacre SC, Street LJ, Hallett DJ, Crawforth JM, Kelly S, Owens AP, Blackaby WP, Lewis RT, Stanley J, Smith AJ, Ferris P, Sohal B, Cook SM, Pike A, Brown N, Wafford KA, Marshall G, Castro JL, Atack JR (2006) Imidazo[1,2-a]pyrimidines as functionally selective and orally bioavailable GABAA α2/α3 binding site agonists for the treatment of anxiety disorders. J Med Chem 49:35–38

    Article  PubMed  CAS  Google Scholar 

  • Gorman JK (2005) Benzodiazepines: taking the good with the bad and the ugly. CNS Spectr 10:14–15

    Google Scholar 

  • Haefely W, Kulcsar A, Mohler H, Pieri L, Polc P, Schaffner R (1975) Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 14:131–151

    PubMed  CAS  Google Scholar 

  • Hunkeler W, Möhler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290:514–516

    Article  PubMed  CAS  Google Scholar 

  • Jennings AS, Lewis RT, Russell MGN, Hallett DJ, Street LJ, Castro JL, Atack JR, Cook SM, Lincoln R, Stanley J, Smith AJ, Reynolds DS, Sohal B, Pike A, Marshall GR, Wafford KA, Sheppard WFA, Tye SJ (2006) Imidazo[1,2-b][1,2,4]triazines as α2/α3 subtype selective GABAA agonists for the treatment of anxiety. Bioorg Med Chem Lett 16:1477–1480

    Article  PubMed  CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11:457–462

    Article  PubMed  CAS  Google Scholar 

  • Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy J-M, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451:330–334

    Article  PubMed  CAS  Google Scholar 

  • Knabl J, Zeilhofer UB, Crestani F, Rudolph U, Zeilhofer HU (2009) Genuine antihyperalgesia by systemic diazepam revealed by experiments in GABAA receptor point-mutated mice. Pain 141:233–238

    Article  PubMed  CAS  Google Scholar 

  • Kohut SJ, Ator NA (2008) Novel discriminative stimulus effects of TPA023B, subtype-selective γ-aminobutyric-acidA/benzodiazepine modulator: comparisons with zolpidem, lorazepam, and TPA023. Biochem Pharmacol Behav 90:65–73

    Article  CAS  Google Scholar 

  • Lader M, Tylee A, Donoghue J (2009) Withdrawing benzodiazepines in primary care. CNS Drugs 23:19–34

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, Montrose D (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 165:1585–1593

    Article  PubMed  Google Scholar 

  • Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy J-M, Rülicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  Google Scholar 

  • Maubach KA (2006) The GABAA receptor as a potential target for the treatment of cognitive dysfunction. Drugs Future 31:151–162

    Article  CAS  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  • McMahon LR, France CP (2006) Differential behavioral effects of low efficacy positive GABAA modulators in combination with benzodiazepines and a neuroactive steroid in rhesus monkeys. Br J Pharmacol 147:260–268

    Article  PubMed  CAS  Google Scholar 

  • Mirza NR, Nielsen EØ (2006) Do subtype-selective γ-aminobutyric acidA receptor modulators have a reduced propensity to induce physical dependence in mice? J Pharmacol Exp Ther 316:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Mirza NR, Watjen F, Hartz BP, Teuber L, Nielsen EØ, Mathiasen LI, Johansen TH, Jensen LH (2003) NS2710: a novel anxiolytic with a dual mechanism of action. Behav Pharmacol 14:S24

    Google Scholar 

  • Moroz G (2004) High-potency benzodiazepines: recent clinical results. J Clin Psychiatry 65(Suppl 5):13–18

    PubMed  CAS  Google Scholar 

  • Mirza NR, Larsen JS, Mathiasen C, Jacobsen TA, Munro G, Erichsen HK, Nielsen AN, Troelsen KB, Nielsen EФ, Ahring PK (2008) NS11394 [3′-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J Pharmacol Exp Ther 327:954–968

    Google Scholar 

  • Nutt DJ (2005) Overview of diagnosis and drug treatments of anxiety disorders. CNS Spectr 10:49–56

    PubMed  Google Scholar 

  • O’Brien CP (2005) Benzodiazepine use, abuse, and dependence. J Clin Psychiatry 66(Suppl 2):28–33

    PubMed  Google Scholar 

  • O’Hanlon JF, Haak TW, Blaauw GJ, Riemersma JBJ (1982) Diazepam impairs lateral position control in highway driving. Science 217:79–81

    Article  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  PubMed  CAS  Google Scholar 

  • Pym LJ, Cook SM, Rosahl T, McKernan RM, Atack JR (2005) Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15–4513. Br J Pharmacol 146:817–825

    Article  PubMed  CAS  Google Scholar 

  • Quirk K, Blurton P, Fletcher S, Leeson P, Tang F, Mellilo D, Ragan CI, McKernan RM (1996) [3H]L-655, 708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the α5 subunit. Neuropharmacology 35:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy J-M, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800

    Article  PubMed  CAS  Google Scholar 

  • Russell MGN, Carling RW, Street LJ, Hallett DJ, Goodacre S, Mezzogori E, Reader M, Cook SM, Bromidge FA, Newman R, Smith AJ, Wafford KA, Marshall GR, Reynolds DS, Dias R, Ferris P, Stanley J, Lincoln R, Tye SJ, Sheppard WFA, Sohal B, Pike A, Dominguez M, Atack JR, Castro JL (2006) Discovery of imidazo[1,2-b][1,2,4]triazines as GABAA α2/3 subtype selective agonists for the treatment of anxiety. J Med Chem 49:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shader RI, Greenblatt DJ (1993) Use of benzodiazepines in anxiety disorders. N Engl J Med 328:1398–405

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234

    PubMed  CAS  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    Article  PubMed  CAS  Google Scholar 

  • Sigel E, Barnard EA (1984) A γ-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their interactions. J Biol Chem 259:7219–7223

    PubMed  CAS  Google Scholar 

  • Sigel E, Baur R, Boulineau N, Minier F (2006) Impact of subunit positioning on GABAA receptor function. Biochem Soc Trans 34:868–871

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA (2004) Analysis of the set of GABAA receptor genes in the human genome. J Biol Chem 279:41422–41435

    Article  PubMed  CAS  Google Scholar 

  • Sine S, Engel A (2006) Recent advances in Cys-loop receptor structure and function. Nature 440:448–455

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Alder L, Silk J, Adkins C, Fletcher AE, Scales T, Kerby J, Marshall G, Wafford KA, McKernan RM, Atack JR (2001) Effect of α subunit on allosteric modulation of ion channel function in stably expressed human recombinant γ-aminobutyric acidA receptors determined using 36Cl ion flux. Mol Pharmacol 59:1108–1118

    PubMed  CAS  Google Scholar 

  • Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR, Reynolds DS (2005) The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J Psychopharmacol 19:221–227

    Article  PubMed  CAS  Google Scholar 

  • Sternbach LH (1979) The benzodiazepine story. J Med Chem 22:1–7

    Article  PubMed  CAS  Google Scholar 

  • Stewart SA (2005) The effects of benzodiazepines on cognition. J Clin Psychiatry 66(Suppl 2): 9–13

    PubMed  CAS  Google Scholar 

  • Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Suzdak PD, Paul SM, Crawley JN (1988) Effects of Ro15–4513 and other benzodiazepine receptor inverse agonists on alcohol-induced intoxication in the rat. J Pharmacol Exp Ther 245:880–886

    PubMed  CAS  Google Scholar 

  • Van Laere K, Bormans G, Sanabria-Bohórquez SM, de Groot T, Dupont P, De Lepeleire I, de Hoon J, Mortelmans L, Hargreaves RJ, Atack JR, Burns HD (2008) In vivo characterization and dynamic receptor occupancy imaging of TPA023B, an α2/α3/α5 subtype selective γ-aminobutyric acid-A partial agonist. Biol Psychiatry 64:153–161

    Article  PubMed  Google Scholar 

  • Van Steveninck AL, Gieschke R, Schoemaker RC, Roncari G, Tuk B, Pieters MSM, Breimer DD, Cohen AF (1996) Pharmacokinetic and pharmacodynamic interactions of bretazenil and diazepam with alcohol. Br J Clin Pharmacol 41:565–573

    Article  PubMed  Google Scholar 

  • Weintraub M, Singh S, Byrne L, Maharaj K, Guttmacher L (1991) Consequences of the 1989 New York State triplicate benzodiazepine prescription regulations. J Am Med Assoc 266:2392–2397

    Article  CAS  Google Scholar 

  • Wieland HA, Lüddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

    PubMed  CAS  Google Scholar 

  • Wildin JD, Pleuvry BJ, Mawer GE, Onon T, Millington L (1990) Respiratory and sedative effects of clobazam and clonazepam in volunteers. Br J Clin Pharmacol 29:169–177

    Article  PubMed  CAS  Google Scholar 

  • Woods JH (1998) Problems and opportunities in regulation of benzodiazepines. J Clin Pharmacol 38:773–782

    PubMed  CAS  Google Scholar 

  • Woods JH, Winger G (1995) Current benzodiazepine issues. Psychopharmacology 118:107–115

    Article  PubMed  CAS  Google Scholar 

  • Woods JH, Winger G (1997) Abuse liability of flunitrazepam. J Clin Psychopharmacol 17(Suppl 2):1S–57S

    Article  PubMed  CAS  Google Scholar 

  • Woods JH, Katz JL, Winger G (1992) Benzodiazepines: use, abuse and consequences. Pharmacol Rev 44:151–347

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Atack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atack, J.R. (2009). GABAA Receptor α2/α3 Subtype-Selective Modulators as Potential Nonsedating Anxiolytics. In: Stein, M., Steckler, T. (eds) Behavioral Neurobiology of Anxiety and Its Treatment. Current Topics in Behavioral Neurosciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_30

Download citation

Publish with us

Policies and ethics