Skip to main content

Animal Models of Anxiety and Anxiolytic Drug Action

  • Chapter
  • First Online:
Behavioral Neurobiology of Anxiety and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 2))

Abstract

Animal models of anxiety attempt to represent some aspect of the etiology, symptomatology, or treatment of human anxiety disorders, in order to facilitate their scientific study. Within this context, animal models of anxiolytic drug action can be viewed as treatment models relevant to the pharmacological control of human anxiety. A major purpose of these models is to identify novel anxiolytic compounds and to study the mechanisms whereby these compounds produce their anxiolytic effects. After a critical analysis of “face,” “construct,” and “predictive” validity, the biological context in which animal models of anxiety are to be evaluated is specified. We then review the models in terms of their general pharmacological profiles, with particular attention to their sensitivity to 5-HT1A agonists and antidepressant compounds. Although there are important exceptions, most of these models are sensitive to one or perhaps two classes of anxiolytic compounds, limiting their pharmacological generality somewhat, but allowing in depth analysis of individual mechanisms of anxiolytic drug action (e.g., GABAA agonism). We end with a discussion of possible sources of variability between models in response to 5-HT1A agonists and antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From an evolutionary perspective, one could argue that this is putting the cart before the horse: a scientific understanding of anxiety in humans first requires a detailed understanding of its distal and proximal causes in lower animals.

  2. 2.

    For readers interested in investigational drugs, their anxiolytic properties and mechanisms of action, see Chapters Metabotropic Glutamate Receptors (W. Spooren), Neuropeptides (T. Steckler), and Cannabinoids (C. Wotjak) in the present volume.

References

  • Adamec R, Bartoszyk GD, Burton P (2004) Effects of systemic injections of vilazodone, a selective serotonin reuptake inhibitor and serotonin 1A receptor agonist, on anxiety induced by predator stress in rats. Eur J Pharmacol 504:65–77

    Article  PubMed  CAS  Google Scholar 

  • Albrechet-Souza L, Oliveira AR, De Luca MC et al (2005) A comparative study with two types of elevated plus-maze (transparent vs. opaque walls) on the anxiolytic effects of midazolam, one-trial tolerance and fear-induced analgesia. Prog Neuropsychopharmacol Biol Psychiatry 29(4):571–579

    Article  PubMed  CAS  Google Scholar 

  • Albrechet-Souza L, de Carvalho MC, Franci CR, Brandao ML (2007) Increases in plasma corticosterone and stretched-attend postures in rats naive and previously exposed to the elevated plus-maze are sensitive to the anxiolytic-like effects of midazolam. Horm Behav 52:267–273

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, (DSM-IVTM), 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Anuradha H, Srikumar BN, Rao BSS et al (2008) Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABA(A) receptor benzodiazepine receptor-cl- channel complex. J Neural Transm 115:35–42

    Article  PubMed  CAS  Google Scholar 

  • Argyropoulos SV, Sandford JJ, Nutt D (2000) The psychobiology of anxiolytic drugs Part 2: pharmacological treatments of anxiety. PharmacolTher 88:213–227

    CAS  Google Scholar 

  • Aricioglu F, Altunbas H (2003) Agmatine an endogenous anxiolytic. Agmatine and imidazolines: Their novel receptors and enzymes. 1009:136–140

    Google Scholar 

  • Atack JR, Pike A, Marshall G et al (2006) The in vivo properties of pagoclone in rat are most likely mediated by 5′-hydroxy pagoclone. Neuropharmacology 50:677–689

    Article  PubMed  CAS  Google Scholar 

  • Baldwin HA, Johnston AL, File SE (1989) Antagonistic effects of caffeine and yohimbine in animal tests of anxiety. Eur J Pharmacol 159:211–215

    Article  PubMed  CAS  Google Scholar 

  • Ballard TM, Woolley ML, Prinssen E et al (2005) The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berl) 179:218–229

    Article  CAS  Google Scholar 

  • Bartoszyk GD, Hegenbart R, Ziegler H (1997) EMD 68843, a serotonin reuptake inhibitor with selective presynaptic 5-HT1A receptor agonistic properties. Eur J Pharmacol 322:147–153

    Article  PubMed  CAS  Google Scholar 

  • Beardslee SL, Papadakis E, Fontana DJ et al (1990) Antipanic drug treatments: failure to exert anxiolytics-like effects on defensive burying behavior. Pharmacol Biochem Behav 35:451–455

    Article  PubMed  CAS  Google Scholar 

  • Becker C, Thiebot MH, Touitou Y et al (2001) Enhanced cortical extracellular levels of cholecystokinin-like material in a model of anticipation of social defeat in the rat. J Neurosci 21:262–269

    PubMed  CAS  Google Scholar 

  • Berg WK, Davis M (1984) Diazepam blocks fear-enhanced startle elicited electrically from the brain-stem. Physiol Behav 32:333–336

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Bhattacharya A, Sairam K et al (2000) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 7:463–469

    Article  PubMed  CAS  Google Scholar 

  • Bill DJ, Fletcher A, Knight M (1989) Actions of 5HT1A ligands and standard anxiolytics on mouse exploratory behaviour in a two compartment light: dark arena. Br J Pharmacol 98(Suppl):679

    Google Scholar 

  • Blampied NM, Kirk RC (1983) Defensive burying: effects of diazepam and oxprenolol measured in extinction. Life Sci 33:695–699

    Article  PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC, Agullana R et al (1991) 22 kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol Behav 50:967–972

    Article  PubMed  CAS  Google Scholar 

  • Blumberg MS, Sokoloff G, Kirby RF et al (2000) Distress vocalizations in infant rats: what’s all the fuss about? Psychol Sci 11:78–81

    Article  PubMed  CAS  Google Scholar 

  • Bojarski AJ, Paluchowska MH, Duszynska B et al (2006) Structure-intrinsic activity relationship studies in the group of 1-imido/amido substituted 4-(4-arylpiperazin-1-yl) cyclohexane derivatives; new, potent 5-HT1A receptor agents with anxiolytic-like activity. Bioorg Med Chem 14:1391–1402

    Article  PubMed  CAS  Google Scholar 

  • Bondi CO, Barrera G, Lapiz MDS et al (2007) Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine. Prog Neuro-psychopharmacol Biol Psychiat 31:482–495

    Article  CAS  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163:121–141

    Article  PubMed  CAS  Google Scholar 

  • Both FL, Meneghini L, Kerber VA et al (2005) Psychopharmacological profile of the alkaloid psychollatine as a 5HT2(A. J Nat Prod 68:374–380

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Redrobe JP, Hascoet M et al (1996) A schematic representation of the psychopharmacological profile of antidepressants. Prog Psychopharmacol Biol Psychiat 20:1389–1402

    Article  CAS  Google Scholar 

  • Bourin M, Petit-Demouliere B, Dhonnchadha BN et al (2007) Animal models of anxiety in mice. Fundam Clin Pharm 21:567–574

    Article  CAS  Google Scholar 

  • Bradley BF, Starkey NJ, Brown SL et al (2007) The effects of prolonged rose odor inhalation in two animal models of anxiety. Physiol Behav 92:931–938

    Article  PubMed  CAS  Google Scholar 

  • Bristow LJ, O’Connor D, Watts R et al (2000) Evidence for accelerated desensitisation of 5-HT2C receptors following combined treatment with fluoxetine and the 5-HT1A receptor antagonist, WAY 100, 635, in the rat. Neuropharmacology 39:1222–1236

    Article  PubMed  CAS  Google Scholar 

  • Brocco MJ, Koek W, Degryse AD et al (1990) Comparative studies on the anti-punishment effects of chlordiazepoxide, buspirone and ritanserin in the pigeon, Geller-Seifter and Vogel conflict procedures. Behav Pharmacol 1:403–418

    Article  PubMed  Google Scholar 

  • Brodkin J, Busse C, Sukoff SJ et al (2002) Anxiolytic-like activity of the mGluR5 antagonist MPEP – a comparison with diazepam and buspirone. Pharmacol Biochem Behav 73:359–366

    Article  PubMed  CAS  Google Scholar 

  • Broekkamp CL, Rijk HW, Joly-Gelouin D et al (1986) Major tranquilizers can be distinguished from minor tranquilizers on the basis of effects on marble-burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229

    Article  PubMed  CAS  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328

    Article  PubMed  CAS  Google Scholar 

  • Burgdorf J, Panksepp J (2006) The neurobiology of positive emotions. Neurosci Biobehav Rev 30:173–187

    Article  PubMed  Google Scholar 

  • Busse CS, Brodkin J, Tattersall D et al (2004) The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1, 3-thiazol-4-yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. Neuropsychopharmacology 29:1971–1979

    Article  PubMed  CAS  Google Scholar 

  • Byrnes EM, Bridges RS (2006) Reproductive experience reduces the sedative, but not anxiolytic effects of diazepam. Psychoneuroendocrinology 31:988–996

    Article  PubMed  CAS  Google Scholar 

  • Cadogan AK, Wright IK, Coombs I et al (1992) Repeated paxroxetine administration in the rat produces an anxiolytic profile in the elevated X-maze and decreased [3H]-ketanserin binding. Neurosci Lett 42(Suppl):S8

    Google Scholar 

  • Caille D, Bergis OE, Fankhauser C et al (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. ll. Pharmacological profile. J Pharmacol Exp Ther 277:265–277

    PubMed  CAS  Google Scholar 

  • Caliendo G, Santagada V, Perissutti E et al (2005) Derivatives as 5HT(1A) receptor ligands – past and present. Curr Med Chem 12:1721–1753

    Article  PubMed  CAS  Google Scholar 

  • Cao BJ, Rodgers RJ (1997) Comparative behavioural profiles of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in the murine elevated plus-maze. Neuropharmacology 36:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Carden SE, Hofer MA (1990) Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behav Neurosci 104:160–166

    Article  PubMed  CAS  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  PubMed  CAS  Google Scholar 

  • Carr MN, Bekku N, Yoshimura H (2006) Identification of anxiolytic ingredients in ginseng root using the elevated plus-maze test in mice. Eur J Pharmacol 531:160–165

    Article  PubMed  CAS  Google Scholar 

  • Casella JV, Davis M (1985) Fear enhanced acoustic startle is not attenuated by acute or chronic imipramine treatment in rats. Psychopharmacology (Berl) 87:4

    Google Scholar 

  • Cechin EM, Quevedo J, Barichello T et al (2003) Dose-related effects of propericiazine in rats. Braz J Med Biol Res 36(2):227–231

    Article  PubMed  CAS  Google Scholar 

  • Cha HY, Park JH, Hong JT et al (2005) Anxiolytic-like effects of ginsenosides on the elevated plus-maze model in mice. Biol Pharm Bull 28:1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Chaki S, Oshida Y, Ogawa S et al (2005) MCL0042: a nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity. Pharmacol Biochem Behav 82:621–626

    Article  PubMed  CAS  Google Scholar 

  • Cheeta S, Irvine E, File SE (2001) Social isolation modifies nicotine’s effects in animal tests of anxiety. Br J Pharmacol 132:1389–1395

    Article  PubMed  CAS  Google Scholar 

  • Chen SW, Mi XJ, Wang R et al (2005) Behavioral effects of sinomenine in murine models of anxiety. Life Sci 78:232–238

    Article  PubMed  CAS  Google Scholar 

  • Chen SW, Wang WJ, Li WJ et al (2006) Anxiolytic-like effect of asiaticoside in mice. Pharmacol Biochem Behav 85:339–344

    Article  PubMed  CAS  Google Scholar 

  • Chi CC (1965) Effect of amobarbital sodium on conditioned fear as measured by potentiated startle response in rats. Psychopharmacologia 7:115–122

    Article  PubMed  CAS  Google Scholar 

  • Clénet F, Hascoët M, Fillion G et al (2004) Anxiolytic profile of HG1, a 5-HT-moduline antagonist, in three mouse models of anxiety. Eur Neuropsychopharmacol 14(6):449–456

    Article  PubMed  CAS  Google Scholar 

  • Cole JC, Rodgers RJ (1994) Ethological evaluation of the effects of acute and chronic buspirone treatment in the murine elevated plus-maze test: comparison with haloperidol. Psychopharmacology (Berl) 114:288–296

    Article  CAS  Google Scholar 

  • Cole JC, Rodgers RJ (1995) Ethological comparison of the effects of diazepam and acute/chronic imipramine on the behaviour of mice in the elevated plus-maze. Pharmacol Biochem Behav 52:473–478

    Article  PubMed  CAS  Google Scholar 

  • Collinson N, Dawson GR (1997) On the elevated plus-maze the anxiolytic-like effects of the 5-HT1A agonist, 8-OH-DPAT, but not the anxiogenic-like effects of the 5-HT1A partial agonist, buspirone, are blocked by the 5-HT1A antagonist, WAY 100635. Psychopharmacology (Berl) 132:35–43

    Article  CAS  Google Scholar 

  • Commissaris RL, Hill RJ (1995) High-dose subchronic imipramine treatment: effects on anxiety-like (conflict) behavior in rats. Anxiety 1:109–113

    CAS  Google Scholar 

  • Commissaris RL, Ellis DM, Hill TJ et al (1990) Chronic antidepressant and clonidine treatment effects on conflict behavior in the rat. Pharmacol Biochem Behav 37:167–176

    Article  PubMed  CAS  Google Scholar 

  • Commissaris RL, Humrich J, Johns J et al (1995) The effects of monoamine oxidase (MAO) inhibitors on conflict behavior in the rat. Behav Pharmacol 6:195–202

    Article  PubMed  CAS  Google Scholar 

  • Commissaris RL, Fomum EA, Leavell BJ (2004) Effects of buspirone and alprazolam treatment on the startle-potentiated startle response. Depress Anxiety 19:146–151

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Costa CRA, Gargano AC et al (2006) Differential behaviour in the marble-burying test does not predict behavioural differences in generalized anxiety disorder models. Eur Neuropsychopharmacol 16:S474–S475

    Article  Google Scholar 

  • Costall B, Hendrie CA, Kelly ME et al (1987) Actions of sulpiride and tiapride in a simple model of anxiety in mice. Neuropharmacology 26:5

    Google Scholar 

  • Costall B, Domeney AM, Grrard PA et al (1988a) Zacopride: anxiolytic profile in rodent and primate models of anxiety. J Pharm Pharmacol 40:3

    Google Scholar 

  • Costall B, Kelly ME, Naylor RJ et al (1988b) Actions of buspirone in a putative model of anxiety in the mouse. J Pharm Pharmacol 40:6

    Google Scholar 

  • Costall B, Jones BJ, Kelly ME et al (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32:8

    Article  Google Scholar 

  • Costall B, Domeney AM, Farre AJ et al (1992) Profile of action of a novel 5-hydroxytriptamine1A receptor ligand E-4424 to inhibit aversive behavior in the mouse, rat and marmoset. J Pharmacol Exp Ther 262:8

    Google Scholar 

  • Costanzo A, Guerrini G, Ciciani G et al (2002) Benzodiazepine receptor ligands. 7. Synthesis and pharmacological evaluation of new 3-esters of the 8-chloropyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide. 3-(2-thienylmethoxycarbonyl) derivative: an anxioselective agent in rodents. J Med Chem 45:5710–5720

    Article  PubMed  CAS  Google Scholar 

  • Costello NL, Carlson JN, Glick SD (1991) Acute administration of diazepam and buspirone in rats trained on conflict schedules having different degrees of predictability. Pharmacol Biochem Behav 40:787–794

    Article  PubMed  CAS  Google Scholar 

  • Craft RM, Howard JL, Pollard GT (1988) Conditioned defensive burying as a model for identifying anxiolytics. Pharmacol Biochem Behav 30:775–780

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15:4

    Article  Google Scholar 

  • Crawley JN, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:3

    Article  Google Scholar 

  • Critchley MAE, Handley SL (1987a) 5-HT 1A ligand effects in the X-maze anxiety test. Br J Pharmacol 92:660P

    Google Scholar 

  • Critchley MAE, Handley SL (1987b) Effects in the X-maze model of agents acting at 5-HT 1 and 5-HT 2 receptors. Psychopharmacology (Berl) 93:502–506

    Article  CAS  Google Scholar 

  • Cronbach LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52:281–302

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Holmes A (2005) the ascent of mouse: advances in modelling human depression and anxiety. Nat Rev 4:775–790

    Article  CAS  Google Scholar 

  • Cryan JF, Kelly PH, Chaperon F et al (2004) Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N, N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4, 6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther 310(3):952–963

    Article  PubMed  CAS  Google Scholar 

  • Cui XY, Zhao X, Chu QP et al (2007) Influence of diltiazem on the behavior of zolpidem-treated mice in the elevated-plus maze test. J Neural Transm 114:155–160

    Article  PubMed  CAS  Google Scholar 

  • Cutler MG (1991) An ethological study of the effects of buspirone and the 5-HT3 receptor antagonist, BRL 43694 (granisetron) on behavior during social interactions in female and male mice. Neuropharmacology 30:7

    Google Scholar 

  • Dal-Cól ML, Pereira LO, Rosa VP et al (2003) Lack of midazolam-induced anxiolysis in the plus-maze Trial 2 is dependent on the length of Trial 1. Pharmacol Biochem Behav 74:395–400

    Article  PubMed  Google Scholar 

  • Davis M (1979) Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacology 62:7

    Article  Google Scholar 

  • Davis M (1986a) Neural mechanisms of fear conditioning measured with the acoustic startle reflex. Pharmacol Biochem Behav 25:312

    Google Scholar 

  • Davis M (1986b) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100:814–824

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Kehne JH, Commissaris RL (1985) Antagonism of apomorphine-enhanced startle by alpha-1-adrenergic antagonists. Eur J Pharmacol 108:233–241

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Cassella JV, Kehne JH (1988) Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated startle paradigm: comparison with 8-OH-DPAT and ipsapirone. Psychopharmacology (Berl) 94:14–20

    Article  CAS  Google Scholar 

  • De Angelis L (1992) The anxiogenic-like effects of pentylenetetrazole in mice treated chronically with carbamazepine or valproate. Methods Find Exp Clin Pharmacol 14:767–771

    PubMed  Google Scholar 

  • De Angelis L, Furlan C (2000) The anxiolytic like properties of two selective MAOIs, moclobemide and selegiline, in a standard and an enhanced light/dark aversion test. Pharmacol Biochem Behav 65:649–653

    Article  PubMed  Google Scholar 

  • De Boer SF, Slangen JL, van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Pharmacol Biochem Behav 47:1089–1098

    Google Scholar 

  • de Jongh R, Groenink L, van der Gugten J et al (2002) The light-enhanced startle paradigm as a putative animal model for anxiety: effects of chlordiazepoxide, flesinoxan and fluvoxamine. Psychopharmacology 159:176–180

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Schreiber R, Melon C et al (2004) 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur Neuropsychopharmacol 14:487–495

    Article  PubMed  CAS  Google Scholar 

  • Degroot A, Nomikos GG (2004) Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur J Neurosci 20:1059–1064

    Article  PubMed  Google Scholar 

  • Dekeyne A, Brocco M, Adhumeau A et al (2000) The selective serotonin (5-HT)1A receptor ligand, S15535, displays anxiolytic-like effects in the social interaction and Vogel models and suppresses dialysate levels of 5-HT in the dorsal hippocampus of freely-moving rats. Psychopharmacology (Berl) 152:55–66

    Article  CAS  Google Scholar 

  • Deren-Wesolek A, Tatarczynska E, Chojnacka-Wojcik E (1998) The novel buspirone analogue, 8-[4-[2-(1, 2, 3, 4-tetrahydroisoquinolinyl)[butyl]-8-azaspiro]decane-7, 9-dione, with anxiolytic-like and antidepressant-like effects in rats. J Psychopharmacology (Berl) 12:380–384

    Article  CAS  Google Scholar 

  • DeVry J, Benz U, Schreiber R et al (1993) Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety agents. Eur J Pharmacol 249:331–339

    Article  CAS  Google Scholar 

  • Drapier D, Bentue-Ferrer D, Laviolle B et al (2007) Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze. Behav Brain Res 176:202–209

    Article  PubMed  CAS  Google Scholar 

  • Dunn RW, Corbett R, Fielding S (1989) Effects of 5-HT1A receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. Eur J Pharmacol 169:10

    Article  Google Scholar 

  • Duxon MS, Starr KR, Upton N (2000) Latency to paroxetine-induced anxiolysis in the rat is reduced by co-administration of the 5-HT1A receptor antagonist WAY100635. Br J Pharmacol 130:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Eguchi J, Inomata Y, Saito K (2001) The anxiolytic-like effect of MCI-225, a selective NA reuptake inhibitor with 5-HT3 receptor antagonism. Pharmacol Biochem Behav 68:677–683

    Article  PubMed  CAS  Google Scholar 

  • Ellis DM, Fontana DJ, McCloskey C et al (1990) Chronic anxiolytic treatment effects on conflict behavior in the rat. Pharmacol Biochem Behav 37:177–186

    Article  PubMed  CAS  Google Scholar 

  • Engin E, Treit D (2008) The effects of intra-cerebral drug infusions on animals’ untrained fear reactions: a systematic review. Prog Neuro-Psychopharmacol Biol Psychiat 32(6):1399–1419

    Article  CAS  Google Scholar 

  • Escarabajal MD, Torres C, Flaherty CF (2003) The phenomenon of one-trial tolerance to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze test is abolished by previous administration of chlordiazepoxide or buspirone. Life Sci 73:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Felipe FCB, Sousa JT, Souza LEDO et al (2007) Piplartine, an amide alkaloid from piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 14:605–612

    Article  CAS  Google Scholar 

  • Fernandez-Guasti A, Lopez-Rubalcava C (1998) Modification of the anxiolytic action of 5-HT1A compounds by GABA-benzodiazepine agents in rats. Pharmacol Biochem Behav 60:27–32

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Martinez-Mota L (2003) Orchidectomy sensitizes male rats to the action of diazepam on burying behavior latency: role of testosterone. Pharmacol Biochem Behav 75:473–479

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Picazo O (1990) The actions of diazepam and serotonergic anxiolytics vary according to the gender and the estrous cycle phase. Pharmacol Biochem Behav 37:77–81

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Picazo O (1997) Anxiolytic action of diazepam, but not of buspirone, are influenced by gender and the endocrine stage. Behav Brain Res 88:213–218

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Hong E, Lopez-Rubalcava C (1992) Species differences in the mechanism through which the serotonergic agonists indorenate and ipsapirone produce their anxiolytic action. Psychopharmacology (Berl) 107:61–68

    Article  CAS  Google Scholar 

  • Fernandez-Guasti A, Martinez-Mota L, Estrada-Camerena E et al (1999) Chronic treatment with desipramine induces an estrous cycle-dependent anxiolytic-like action in the burying behavior, but not in the elevated plus maze test. Pharmacol Biochem Behav 63:13–20

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Ferreira A, Picazo O (2001) Diazepam, but not buspirone, induces similar anxiolytic-like actions in lactating and ovariectomized Wistar rats. Pharmacol Biochem Behav 70:85–93

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Guasti A, Reyes R, Martínez-Mota L et al (2005) Influence of inflammatory nociception on the anxiolytic-like effect of diazepam and buspirone in rats. Psychopharmacology (Berl) 180(3):399–407

    Article  CAS  Google Scholar 

  • File SE (1980) The use of social interaction as a model of detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Meth 2:219–238

    Article  CAS  Google Scholar 

  • File SE (1985) Animal models for predicting clinical efficacy of anxiolytic drugs: social behavior. Neuropsychobiology 13:7

    Article  Google Scholar 

  • File SE, Hyde JRG (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:5

    Article  Google Scholar 

  • File SE, Hyde JRG (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilisers and stimulants. Pharmacol Biochem Behav 11:4

    Google Scholar 

  • File SE, Johnston AL (1987) Chronic treatment with imipramine does not reverse the effects of 3 anxiogenic compounds in a test of anxiety in the rat. Neuropsychobiology 17:187–192

    Article  PubMed  CAS  Google Scholar 

  • File SE, Pellow S (1985) The effects of triazolobenzodiazepines in two animal tests of anxiety and in the holeboard. Br J Pharmacol 86:729–735

    Article  PubMed  CAS  Google Scholar 

  • File SE, Ouagazzal AM, Gonzalez LE et al (1999) Chronic fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A receptor function. Pharmacol Biochem Behav 62:695–701

    Article  PubMed  CAS  Google Scholar 

  • File SE, Cheeta S, Akanezi C (2001) Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res 888:311–313

    Article  PubMed  CAS  Google Scholar 

  • Finn DA, Rutledge-Gorman MT, Crabbe JC (2003) Genetic animal models of anxiety. Neurogenetics 4:109–135

    PubMed  Google Scholar 

  • Fish EW, Sekinda M, Ferrari PF et al (2000) Distress vocalizations in maternally separated mouse pups: modulation via 5-HT1A, 5-HT1B and GABA(A) receptors. Psychopharmacology 149:277–285

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Gupta S et al (2004) Anxiolytic-like effects of escitalopram, citalopram, and R-citalopram in maternally separated mouse pups. J Pharmacol Exp Ther 308:474–480

    Article  PubMed  CAS  Google Scholar 

  • Fontana DJ, Commissaris RL (1988) Effects of acute and chronic imipramine administration on conflict behavior in the rat: a potential “animal model” for the study of panic disorder? Psychopharmacology (Berl) 95:147–150

    Article  CAS  Google Scholar 

  • Fontana DJ, Carbary TM, Commissaris RL (1989) Effects of acute and chronic anti-panic drug administration on conflict behavior in the rat. Psychopharmacology (Berl) 98:157–162

    Article  CAS  Google Scholar 

  • Gardner CR (1986) Recent developments in 5-HT-related pharmacology of animal models of anxiety. Pharmacol Biochem Behav 24:1479–1485

    Article  PubMed  CAS  Google Scholar 

  • Gardner CR, Guy AP (1984) A social interaction model of anxiety sensitive to accutely administered benzodiazepines. Drug Dev Res 4:207–216

    Article  Google Scholar 

  • Giusti R, Guidetti G, Costa E et al (1991) The preferential antagonism of pentylenetetrazole proconflict responses differentiates a class of anxiolytic benzodiazepines with potential antipanic action. J Pharmacol Exp Ther 257:1062–1068

    PubMed  CAS  Google Scholar 

  • Gleason SD, Witkin JM (2007) A parametric analysis of punishment frequency as a determinant of the response to chlordiazepoxide in the Vogel conflict test in rats. Pharmacol Biochem Behav 87:380–385

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Saldivar-Gonzalez A, Delgado G, Rodriguez R (2002) Rapid anxiolytic activity of progesterone and pregnanolone in male rats. Pharmacol Biochem Behav 72:543–550

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Pardo H, Conejo NM, Arias JL (2006) Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem. Prog Neuropsychopharmacol Biol Psychiatry 30:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Trujano E, Martinez AL, Reyes-Ramirez A et al (2006) Palmitone isolated from annona diversifolia induces an anxiolytic-like effect in mice. Planta Med 72:703–707

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG, Audi EA, Almeida SS et al (1990) Behavioral effects of 5-HT receptor ligands in the aversive brain stimulation, elevated plus-maze and learned helplessness tests. Neurosci Biobehav Rev 14:501–506

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Moreau JL, Jenck F et al (1994) Acute and chronic treatment with 5-HT reuptake inhibitors differentially modulate emotional responses in anxiety models in rodents. Psychopharmacology 113:463–470

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1996) The use of the rat elevated plus-maze to discriminate between non-selective and BZ-1 (omega) (1) selective, benzodiazepine receptor ligands. Psychopharmacology (Berl) 124:245–254

    Article  CAS  Google Scholar 

  • Griebel G, Rodgers RJ, Perrault G et al (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 57:817–827

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Cohen C, Perrault G et al (1999) Behavioral effects of acute and chronic fluoxetine in Wistar-Kyoto rats. Physiol Behav 67:315–320

    Article  PubMed  CAS  Google Scholar 

  • Groenink L, Van der Gugten J, Verdouw PM et al (1995) The anxiolytic effects of flesinoxan, a 5-HT1A receptor agonist, are not related to its neuroendocrine effects. Eur J Pharmacol 280:185–193

    Article  PubMed  CAS  Google Scholar 

  • Groenink L, Van Der Gugten J, Compaan JC et al (1997) Felsinoxan pretreatment differentially affects corticosterone, prolactin and behavioral responses to a flesinoxan challenge. Psychopharmacology (Berl) 131:93–100

    Article  CAS  Google Scholar 

  • Grundmann O, Nakajima JI, Seo S et al (2007) Anti-anxiety effects of apocynum venetum L. in the elevated plus maze test. J Ethnopharmacol 110:406–411

    Article  PubMed  Google Scholar 

  • Guy AP, Gardner CR (1985) Pharmacological characterisation of a modified social interaction model in rat. Neuropsychobiology 13:194–200

    Article  PubMed  CAS  Google Scholar 

  • Gyertyan I (1995) Analysis of the marble burying response: marbles serve to measure digging rather than evoke burying. Behav Pharmacol 6:24–31

    Article  PubMed  Google Scholar 

  • Hagenbuch N, Feldon J, Yee BK (2006) Use of the elevated plus-maze test with opaque or transparent walls in the detection of mouse strain differences and the anxiolytic effects of diazepam. Behav Pharmacol 17:31–41

    Article  PubMed  CAS  Google Scholar 

  • Hallar J, Hallasz J, Makara GB (2000) Housing conditions and the anxiolytic effect of buspirone: the relationship between main and side effects. Behav Pharmacol 11:9

    Google Scholar 

  • Haller J, Bakos N (2002) Stress-induced social avoidance: a new model of stress-induced anxiety? Physiol Behav 77:327–332

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Leveleki C, Halasz J et al (2001) The effect of glucocorticoids on the anxiolytic efficacy of buspirone. Psychopharmacology 157:388–394

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Leveleki C, Baranyi J et al (2003) Stress, social avoidance and anxiolytics: a potential model of stress-induced anxiety. Behav Pharmacol 14:439–446

    PubMed  CAS  Google Scholar 

  • Handley SL, McBlane JW (1992) Opposite effects of fluoxetine in two animal models of anxiety. Br J Pharmacol 107(Suppl):446P

    Google Scholar 

  • Handley SL, Mithani S (1984) Effects of alpha-adrenoreceptor agonists and antagonists in a X-maze-exploration model of ‘fear’-motivated behaviour. Naunyn-Schmiedeberg’s Arch Pharm 327:1–5

    Article  CAS  Google Scholar 

  • Harasawa T, Ago Y, Itoh S et al (2006) Role of serotonin type 1A receptors in fluvoxamine-induced inhibition of marble-burying behavior in mice. Behav Pharmacol 17:637–640

    Article  PubMed  CAS  Google Scholar 

  • Hascoet M, Bourin M (1997) Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in rats. Pharmacol Biochem Behav 56:317–324

    Article  PubMed  CAS  Google Scholar 

  • Hascoet M, Bourin M (1998) A new approach to the light/dark procedure in mice. Pharmacol Biochem Behav 60:645–653

    Article  PubMed  CAS  Google Scholar 

  • Hascoet M, Bourin M, Dhonnchadha A (2000) The influence of buspirone and its metabolite1-PP on the activity of paroxetine in the mouse light dark paradigm and four plates test. Pharmacol Biochem Behav 67:45–53

    Article  PubMed  CAS  Google Scholar 

  • Hendrie EA, Eilam D, Weiss SM (1997) Effects of diazepam and buspirone on the behaviour of wild voles (microtus socialis) in two models of anxiety. Pharmacol Biochem Behav 58:573–576

    Article  PubMed  CAS  Google Scholar 

  • Hijzen TH, Slangen JL (1989) Effects of midazolam, DMCM and lindane on potentiated startle in the rat. Psychopharmacology (Berl) 99:3

    Article  Google Scholar 

  • Hijzen TH, Houtzager SW, Joordens RJ et al (1995) Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl) 118:150–154

    Article  CAS  Google Scholar 

  • Hodgson RA, Guthrie DH, Varty GB (2008) Duration of ultrasonic vocalizations in the isolated rat pup as a behavioral measure: sensitivity to anxiolytic and antidepressant drugs. Pharmacol Biochem Behav 88:341–348

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Mathew SJ (2008) Anxiety disorders: a comprehensive review of pharmacotherapies. Mt Sinai J Med 75:248–262

    Article  PubMed  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Rodgers RJ (2003) Prior exposure to the elevated plus-maze sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol 459:221–230

    Article  PubMed  CAS  Google Scholar 

  • Howard JL, Pollard GT (1990) Effects of buspirone in the Geller-Seifter conflict test with incremental shock. Drug Dev Res 19:37–47

    Article  CAS  Google Scholar 

  • Huen MS, Hui KM, Leung JW et al (2003) Naturally occurring 2′-hydroxyl-substituted flavonoids as high-affinity benzodiazepine site ligands. Biochem Pharmacol 66:2397–2407

    Article  PubMed  CAS  Google Scholar 

  • Ichimaru Y, Egawa T, Sawa A (1995) 5-HT1A-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble burying behavior in mice. Jpn J Pharmacol 68:65–70

    Article  PubMed  CAS  Google Scholar 

  • Igor BA, Santucci D, Alleva E (2001) Ultrasonic vocalizations emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 125:49–56

    Article  Google Scholar 

  • Iijima M, Chaki S (2005) Separation-induced ultrasonic vocalization in rat pups: further pharmacological characterization. Pharmacol Biochem Behav 82:652–657

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi M, Miyazaki S, Onodera K (1994a) Effects of xanthine derivatives in a light/dark test in mice and contribution of adenosine receptors. Methods Find Exp Clin Pharmacol 16:639–644

    PubMed  CAS  Google Scholar 

  • Imaizumi M, Suzuki T, Machida H et al (1994b) A fully automated apparatus for a light/dark test measuring anxiolytic or anxiogenic effects of drugs in mice. Jpn J Psychopharmacol 14:83–91

    CAS  Google Scholar 

  • Insel TR, Hill JL, Mayor RB (1986) Rat pup ultrasonic isolation calls: possible mediation by the benzodiazepine receptor complex. Pharmacol Biochem Behav 24:1262–1267

    Article  Google Scholar 

  • Johnston AL, File SE (1988) Profiles of the antipanic compounds, triazolobenzodiazepines and phenelzine, in two animal tests of anxiety. Psychiat Res 25:9

    Article  Google Scholar 

  • Johnston AL, File SE (1989) Yohimbine’s anxiogenic action; evidence for noradrenergic and dopaminergic sites. Pharmacol Biochem Behav 32:151–156

    Article  PubMed  CAS  Google Scholar 

  • Jones GH, Schneider C, Schneider HH et al (1994) Comparison of several benzodiazepine receptor ligands in two models of anxiolytic activity in the mouse: an analysis based on fractional receptor occupancies. Psychopharmacology (Berl) 114:191–199

    Article  CAS  Google Scholar 

  • Joordens RJ, Hijzen TH, Peeters BW et al (1996) Fear potentiated startle response is remarkably similar in two laboratories. Psychopharmacology (Berl) 126:5

    Article  Google Scholar 

  • Joordens RJ, Hijzen TH, Olivier B (1998) The effects of 5-HT1A receptor agonists, 5-HT1A receptor antagonists and their interaction on the fear potentiated startle response. Psychopharmacology (Berl) 139:7

    Article  Google Scholar 

  • Jung JW, Ahn NY, Oh HR et al (2006) Anxiolytic effects of the aqueous extract of uncaria rhynchophylla. J Ethnopharmacol 108:193–197

    Article  PubMed  Google Scholar 

  • Jurczyk S, Kołaczkowski M, Maryniak E et al (2004) New arylpiperazine 5-HT(1A) receptor ligands containing the pyrimido[2, 1-f]purine fragment: synthesis, in vitro, and in vivo pharmacological evaluation. J Med Chem 47:2659–2666

    Article  PubMed  CAS  Google Scholar 

  • Kaltwasser MT (1990) Acoustic startle induced ultrasonic vocalization in the rat – a novel animal-model of anxiety. Psychopharmacology 101:s28–s28

    Google Scholar 

  • Kaltwasser MT (1991) Acoustic startle induced ultrasonic vocalization in the rat – a novel animal-model of anxiety. Behav Brain Res 43:133–137

    Article  PubMed  CAS  Google Scholar 

  • Kantor S, Jakus R, Molnar E et al (2005) Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 [6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline] and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther 315:921–930

    Article  PubMed  CAS  Google Scholar 

  • Kapus GL, Gacsályi I, Vegh M et al (2008) Antagonism of AMPA receptors produces anxiolytic-like behavior in rodents: effects of GYKI 52466 and its novel analogues. Psychopharmacology (Berl) 198:231–241

    Article  CAS  Google Scholar 

  • Kaufmann WA, Humpel C, Alheid GF et al (2003) Compartmentation of alpha 1 and alpha 2 GABA(A) receptor subunits within rat extended amygdala: implications for benzodiazepine action. Brain Res 964:91–99

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Casella JV, Davis M (1988) Anxiolytic effects of buspirone and gepirone in the fear potentiated startle paradigm. Psychopharmacology (Berl) 94:5

    Article  Google Scholar 

  • Kehne JH, Coverdale S, McCloskey TC et al (2000) Effects of the CRF, receptor antagonist, CP 154, 526, in the separation-induced vocalization anxiolytic test in rat pups. Neuropharmacology 39:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Trail B, Bright F (1998) Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated. Neuropharmacology 37:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Kilfoil T, Michel A, Montgomery D et al (1989) Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacology 28:5

    Article  Google Scholar 

  • Kim WK, Jung JW, Ahn NY et al (2004) Anxiolytic-like effects of extracts from albizzia julibrissin bark in the elevated plus-maze in rats. Life Sci 75:2787–2795

    Article  PubMed  CAS  Google Scholar 

  • Kita A, Furukawa K (2008) Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 89:171–178

    Article  PubMed  CAS  Google Scholar 

  • Klein DF (1964) Delineation of two drug-responsive anxiety syndromes. Psychopharmacologia 5:397–408

    Article  PubMed  CAS  Google Scholar 

  • Kłodzińska A, Tatarczyńska E, Stachowicz K et al (2004) The anxiolytic-like activity of AIDA (1-aminoindan-1, 5-dicarboxylic acid), an mGLu 1 receptor antagonist. J Physiol Pharmacol 55(1 Pt 1):113–126

    PubMed  Google Scholar 

  • Knapp DJ, Pohorecky LA (1995) An air-puff stimulus method for elicitation of ultrasonic vocalizations in rats. J Neurosci Methods 62:1–5

    Article  PubMed  CAS  Google Scholar 

  • Koks S, Beljajev S, Koovit I et al (2001) 8-OH-DPAT, but not deramciclane, antagonizes the anxiogenic-like action of paroxetine in an elevated plus-maze. Psychopharmacology (Berl) 153:365–372

    Article  CAS  Google Scholar 

  • Korte SM, Bohus B (1990) The effect of ipsapirone on behavioral and cardiac responses in the shock probe defensive burying test in male rats. Eur J Pharmacol 181:307–310

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, De Boer SF (2003) A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463:163–175

    Article  PubMed  CAS  Google Scholar 

  • Kuan WL, Zhao JW, Barker RA (2008) The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson’s disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharmacology 197:279–293

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Sharma A (2005) Anti-anxiety activity studies on homoeopathic formulations of turnera aphrodisiaca ward. Evid-Based Complement Alternat Med 2:117–119

    Article  PubMed  Google Scholar 

  • Kurt M, Arik AC, Celik S (2000) The effects of sertraline and fluoxetine on anxiety in the elevated plus-maze test in mice. J Basic Clin Physiol Pharmacol 11:173–180

    Article  PubMed  CAS  Google Scholar 

  • Kurt M, Bilge SS, Kukula O, Celik S, Kesim Y (2003) Anxiolytic-like profile of propofol, a general anesthetic, in the plus-maze test in mice. Pol J Pharmacol 55(6):973–977

    PubMed  CAS  Google Scholar 

  • Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Be´dard-Arana T, Morilak DA (2008) Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 20:1115–1137

    Google Scholar 

  • Leveleki C, Sziray N, Levay G et al (2006) Pharmacological evaluation of the stress-induced social avoidance model of anxiety. Brain Res Bull 69:153–160

    Article  PubMed  CAS  Google Scholar 

  • Li X, Morrow D, Witkin JM (2006) Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sci 78:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Liao JF, Hung WY, Chen CF (2003) Anxiolytic-like effects of baicalein and baicalin in the Vogel conflict test in mice. Eur J Pharmacol 464:141–146

    Article  PubMed  CAS  Google Scholar 

  • Lightowler S, Kennett GA, Williamson I et al (1994) Anxiolytic-like effect of paroxetine in a rat social interaction test. Pharmacol Biochem Behav 49:4

    Article  Google Scholar 

  • Lin YC, Hsieh MT, Chen CF et al (2003) Anxiolytic effect of ting-chih-wan in mouse behavior models of anxiety. Am J Chin Med 31:47–59

    Article  PubMed  Google Scholar 

  • Linnoila M, Eckardt M, Durcan M et al (1987) Interactions of serotonin with ethanol: clinical and animal studies. Psychopharmacol Bull 23:452–457

    PubMed  CAS  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92:180–185

    CAS  Google Scholar 

  • Lopez-Rubalcava C (1996) Pre- or post-synaptic activity of 5-HT1A compounds in mice depends on the anxiety paradigm. Pharmacol Biochem Behav 54:677–686

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rubalcava C, Saldivar A, Fernandez-Guasti A (1992) Interaction of GABA and serotonin in the anxiolytic action of diazepam and serotonergic anxiolytics. Pharmacol Biochem Behav 43:433–440

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rubalcava C, Fernandez-Guasti A, Urba-Holmgren R (1996) Age dependant differences in the rat conditioned defensive burying behavior: effect of 5-HT1A compounds. Dev Psychobiol 29:157–169

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rubalcava C, Crus SL, Fernandez-Guasti A (1999) Blockade of the anxiolytic like action of ipsapirone and buspirone, but not that of 8-OH-DPAT, by adrenalectomy in male rats. Psychoneuroendocrinology 24:409–422

    Article  PubMed  CAS  Google Scholar 

  • Louis C, Stemmelin J, Boulay D et al (2008) Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent-models. Pharmacol Biochem Behav 89:36–45

    Article  PubMed  CAS  Google Scholar 

  • Low K, Crestani F, Keist R et al (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  CAS  Google Scholar 

  • Luscombe GP, Mazurkiewicz SE, Buckett WR (1990) Evaluation of tricyclic antidepressants in the elevated plus-maze in rats: anxiolytic effects of dothiepin and doxepine. Br J Pharmacol 100(Suppl):356P

    Google Scholar 

  • Luszczki JJ (2008) Interactions of tiagabine with ethosuximide in the mouse pentylenetetrazole-induced seizure model: an isobolographic analysis for non-parallel dose-response relationship curves. Naunyn-Schmiedeberg’s Arch Pharmacol 378:483–492

    Article  CAS  Google Scholar 

  • Maisonnette S, Morato S, Brandao ML (1993) Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiol Behav 54:753–758

    Article  PubMed  CAS  Google Scholar 

  • Majercsik E, Haller J, Leveleki C et al (2003) The effect of social factors on the anxiolytic efficacy of buspirone in male rats, male mice, and men. Prog Neuro-Psychopharmacol Biol Psychiat 27:1187–1199

    Article  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1988) Blokade of potentiated startle responding in rat by 5-hydroxytriptamine-1A receptor ligands. Eur J Pharmacol 156:8

    Article  Google Scholar 

  • Marowsky A, Fritschy JM, Vogt KE (2004) Functional mapping of GABA(A) receptor subtypes in the amygdala. Eur J Neurosci 20:1281–1289

    Article  PubMed  Google Scholar 

  • Martin JR, Ballard TM, Higgins GA (2002) Influence of the 5-HT2C receptor antagonist, S13–242084, in tests of anxiety. Pharmacol Biochem Behav 71:615–625

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mota L, Estrada-Camarena E, Lopez-Rubalcava C et al (2000) Interaction of desipramine with steroid hormones on experimental anxiety. Psychoneuroendocrinology 25:109–120

    Article  PubMed  CAS  Google Scholar 

  • Martins AP, Marras RA, Guimaraes FS (2000) Anxiolytic effect of a CRH receptor antagonist in the dorsal periaqueductal gray. Depress Anxiety 12:99–101

    Article  PubMed  CAS  Google Scholar 

  • Mathiasen L, Mirza NR (2005) A comparison of chlordiazepoxide, bretazenil, L838, 417 and zolpidem in a validated mouse Vogel conflict test. Psychopharmacology (Berl) 182:475–484

    Article  CAS  Google Scholar 

  • Mathiasen LS, Mirza NR, Rodgers RJ (2008) Strain- and model-dependent effects of chlordiazepoxide, L-838,417 and zolpidem on anxiety-like behaviours in laboratory mice. Pharmacol Biochem Behav (in press)

    Google Scholar 

  • Matsuzawa-Yanagida K, Narita M, Nakajima M et al (2008) Usefulness of antidepressants for improving the neuropathic pain-like state and pain-induced anxiety through actions at different brain sites. Neuropsychopharmacology 33:1952–1965

    Article  PubMed  CAS  Google Scholar 

  • Matuszewich L, Karney JJ, Carter SR, Janasik SP, O’Brien JL, Friedman RD (2007) The delayed effects of chronic unpredictable stress on anxiety measures. Physiol Behav 90:674–681

    Article  PubMed  CAS  Google Scholar 

  • McCloskey TC, Paul BK, Commissaris RL (1987) Buspirone effects in an animal conflict procedure: comparison with diazepam and phenobarbital. Pharmacol Biochem Behav 27:171–175

    Article  PubMed  CAS  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS et al (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha(1) subtype. Nat Neurosci 3:587–582

    Article  PubMed  CAS  Google Scholar 

  • Meert TF, Colpaert FC (1986) The shock probe conflict procedure. A new assay responsive to benzodiazepines, barbiturates and related compounds. Psychopharmacology (Berl) 88:445–450

    Article  CAS  Google Scholar 

  • Mendoza DL, Bravo HL, Swanson HH (1999) Antiagressive and anxiolytic effects of gepirone in mice, and their attenuation by WAY 100635. Pharmacol Biochem Behav 62:499–509

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Hong E (1993) Modification of the anxiolytic effects of 5-HT1A agonists by shock intensity. Pharmacol Biochem Behav 46:569–573

    Article  PubMed  CAS  Google Scholar 

  • Mi XJ, Chen SW, Wang WJ et al (2005) Anxiolytic-like effect of paeonol in mice. Pharmacol Biochem Behav 81:683–687

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Gobert A et al (2001) Anxiolytic properties of the selective, non-peptidergic CRF1 antagonists, CP154, 526 and DMP695: a comparison to other classes of anxiolytic agent. Neuropsychopharmacology 25:585–600

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Girardon S, Mullot J et al (2002) Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin(1) (NK1) receptor antagonists. Neuropharmacology 42:677–684

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Gobert A et al (2005) Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology 177:U448–U413

    Article  CAS  Google Scholar 

  • Mizowaki M, Toriizuka K, Hanawa T (2001) Anxiolytic effect of Kami-Shoyo-San (TJ-24) in mice – possible mediation of neurosteroid synthesis. Life Sci 69:2167–2177

    Article  PubMed  CAS  Google Scholar 

  • Molewijk HE, Vanderpoel AM, Mos J et al (1995) Conditioned ultrasonic distress vocalizations in adult male-rats as a behavioral paradigm for screening anti-panic drugs. Psychopharmacology 117:32–40

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernández M, Tellez-Alcántara NP, García JP et al (2004) Anxiolytic-like actions of leaves of Casimiroa edulis (Rutaceae) in male Wistar rats. J Ethnopharmacol 93:93–98

    Article  PubMed  Google Scholar 

  • Mora S, Diaz-Veliz G, Millan R et al (2005) Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from aloysia polystachya in rats. Pharmacol Biochem Behav 82:373–378

    Article  PubMed  CAS  Google Scholar 

  • Mora S, Millan R, Lungenstrass H et al (2006) The hydroalcoholic extract of salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J Ethnopharmacol 106:76–81

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Aguiar DC, Guimarães FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiat 30:1466–1471

    Article  CAS  Google Scholar 

  • Moser PC (1989) An evaluation of the elevated plus-maze test using the novel anxiolytic buspirone. Psychopharmacology (Berl) 99:48–53

    Article  CAS  Google Scholar 

  • Moser PC, Tricklebank MD, Middlemiss DN (1990) Characterization of MDL 73005EF as a 5-HT 1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam. Br J Pharmacol 99:343–349

    Article  PubMed  CAS  Google Scholar 

  • Motta V, Maisonnette S, Morato S (1992) Effects of blockade of 5-HT2 receptors and activation of 5-HT1A receptors on the exploratory activity of rats in the elevated plus-maze. Psychopharmacology (Berl) 107:135–139

    Article  CAS  Google Scholar 

  • Naderi N, Haghparast A, Saber-Tehrani A et al (2008) Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice. Pharmacol Biochem Behav 89:64–75

    Article  PubMed  CAS  Google Scholar 

  • Naito H, Nakamura A, Inoue M et al (2003) Effect of anxiolytic drugs on air-puff-elicited ultrasonic vocalization in adult rats. Exp Anim 52:409–414

    Article  PubMed  CAS  Google Scholar 

  • Nevins ME, Anthony EW (1994) Antagonists at the serotonin-3 receptor can reduce the fear potentiated startle response in the rat: evidence for difference types of anxiolytic activity? J Pharmacol Exp Ther 268:6

    Google Scholar 

  • Nicolas LB, Kolb Y, Prinssen EPM (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115

    Article  PubMed  CAS  Google Scholar 

  • Nielsen CK, Sanchez C (1995) Effect of chronic diazepam treatment on foot shock-induced ultrasonic vocalization in adult male rats. Pharmacol Toxicol 77:177–181

    Article  PubMed  CAS  Google Scholar 

  • Njung’e K, Handley SL (1991a) Evaluation of marble burying as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    Article  PubMed  Google Scholar 

  • Njung’e K, Handley SL (1991b) Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by moce; a putative test for anxiolytic agents. Br J Pharmacol 104:105–112

    Article  PubMed  Google Scholar 

  • Noirot E (1972) Ultrasounds and material behavior in small rodents. Dev Psychobiol 5:371–387

    Article  PubMed  CAS  Google Scholar 

  • Olajide D, Lader M (1984) A double-blind comparison of buspirone and diazepam in outpatients with chronic anxiety states. Abstract at C.I.N.P. meeting, Florence

    Google Scholar 

  • Olivier B, Molewijk E, van Oorschot R et al (1998) Ultrasonic vocalizations in rat pups: effects of serotonergic ligands. Neurosci Biobehav Rev 23:215–227

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Martin BR (1989) Neuropharmacological and physiological validation of a computer-controlled two compartment black and white box for the assessment of anxiety. Prog Neuro-psychopharmacol Biol Psychiatry 13:963–976

    Article  CAS  Google Scholar 

  • Papp M, Litwa E, Gruca P et al (2006) Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav Pharmacol 17:9–18

    PubMed  CAS  Google Scholar 

  • Park JH, Cha HY, Seo JJ et al (2005) Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Prog Neuropsychopharmacol Biol Psychiatry 29:895–900

    Article  PubMed  Google Scholar 

  • Paschall GY, Davis M (2002) Olfactory-mediated fear-potentiated startle. Behav Neurosci 116:4–12

    Article  PubMed  CAS  Google Scholar 

  • Paslawski T, Treit D, Baker GB et al (1996) The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA. Psychopharmacology (Berl) 127:19–24

    Article  CAS  Google Scholar 

  • Pecknold JC, Familamiri P, Chang H et al (1985) Buspirone: anxiolytic? Prog Neuropsychopharmacol Biol Psychiatry 9:639–642

    Article  PubMed  CAS  Google Scholar 

  • Pellow S (1986) Anxiolytic and anxiogenic drug effects in a novel test of anxiety: are exploratory models of anxiety in rodents valid? Meth Find Expt Clin Pharmacol 8:557–565

    CAS  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, File SE (1987) Can antipanic drugs antagonise the anxiety produced in the rat by drugs acting at the GABA-benzodiazepine receptor complex? Neuropsychobiology 17:5

    Article  Google Scholar 

  • Pellow S, Chopin P, File SE et al (1985) Validation of open:closed arm entries in an elevated plus maze as a measure of anxiety in the rat. J Neurosci Meth 14:149–167

    Article  CAS  Google Scholar 

  • Pellow S, Johnston AL, File SE (1987) Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG 7142 using the elevated plus-maze test in the rat. J Pharm Pharmacol 39:917–928

    Article  PubMed  CAS  Google Scholar 

  • Peng WH, Wu CR, Chen CS et al (2004) Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci 75:2451–2462

    Article  PubMed  CAS  Google Scholar 

  • Penner MR, McFadyen MP, Carrey N et al (2001) Effects of chronic and acute methylphenidate hydrochloride (Ritalin) administration on locomotor activity, ultrasonic vocalizations, and neuromotor development in 3-to 11-day-old CD-1 mouse pups. Dev Psychobiol 39:216–228

    Article  PubMed  CAS  Google Scholar 

  • Perrine SA, Hoshaw BA, Unterwald EM (2006) Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol 147:864–872

    Article  PubMed  CAS  Google Scholar 

  • Picazo O, Lopez-Rubalcava C, Fernandez-Guasti A (1995) Anxiolytic effect of the 5-HT1A compounds 8-hydroxy-2-(di-n-propylamino)tetralin and ipsabirone in the social interaction paradigm: evidence of a presynaptic action. Brain Res Bull 37:6

    Article  Google Scholar 

  • Picazo O, Estrada-Camarena E, Hemandez-Aragon A (2006) Influence of the post-ovariectomy time framep on the experimental anxiety and the behavioural actions of some anxiolytic agents. Eur J Pharmacol 530:88–94

    Article  PubMed  CAS  Google Scholar 

  • Pich E, Samanin R (1986) Disinhibitory effects of buspirone and low doses of sulpiride and haloperidol in two experimental anxiety models in rats: possible role of dopamine. Psychopharmacology (Berl) 89:125–130

    Article  CAS  Google Scholar 

  • Pietraszek M, Sukhanov I, Maciejak P et al (2005) Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur J Pharmacol 514:25–34

    Article  PubMed  CAS  Google Scholar 

  • Pinel JPJ, Treit D (1978) Burying as a defensive response in rats. J Comp Physiol Psychol 92:708–712

    Article  Google Scholar 

  • Pletscher A (1991) The discovery of antidepressants – a winding path. Experiencia 47:4–8

    Article  CAS  Google Scholar 

  • Podhorna J, Brown RE (2000) Flibanserin has anxiolytic effects without locomotor side effects in the infant rat ultrasonic vocalization model of anxiety. Br J Pharmacol 130:739–746

    Article  PubMed  CAS  Google Scholar 

  • Pokk P, Zharkovsky A (1998) The effects of buspirone on the behaviour of control and stressed mice. J Physiol Pharmacol 49:175–185

    PubMed  CAS  Google Scholar 

  • Pollier F, Sarre S, Aguerre S et al (2000) Serotonin reuptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology 22:64–76

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Vetulani J (1993) Similar action of imipramine and arginine-vasopressin in the social interaction test. Pol J Pharmacol 45:2

    Article  Google Scholar 

  • Popik P, Kostakis E, Krawczyk M et al (2006) The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1, 5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Rabbani M, Sajjadi SE, Zarei HR (2003) Anxiolytic effects of Stachys lavandulifolia Vahl on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol 89(2–3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Rabbani M, Sajjadi SE, Vaseghi G et al (2004) Anxiolytic effects of Echium amoenum on the elevated plus-maze model of anxiety in mice. Fitoterapia 75(5):457–464

    Article  PubMed  CAS  Google Scholar 

  • Rabbani M, Sajjadi SE, Jafarian A et al (2005) Anxiolytic effects of Salvia reuterana Boiss. on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol 101:100–103

    Article  PubMed  CAS  Google Scholar 

  • Rex A, Voigt JP, Gustedt C et al (2004) Anxiolytic-like profile in Wistar, but not Sprague-Dawley rats in the social interaction test. Psychopharmacology 177:23–34

    Article  PubMed  CAS  Google Scholar 

  • Richardson R, Vishney A, Lee J (1999) Conditioned odor potentiation of startle in rats. Behav Neurosci 113:787–794

    Article  PubMed  CAS  Google Scholar 

  • Risbrough VB, Geyer MA (2005) Anxiogenic treatments do not increase fear-potentiated startle in mice. Biol Psychiatry 57:33–43

    Article  PubMed  CAS  Google Scholar 

  • Risbrough VB, Brodkin JD, Geyer MA (2003) GABA-A and 5-HTIA receptor agonists block expression of fear-potentiated startle in mice. Neuropsychopharmacology 28:654–663

    Article  PubMed  CAS  Google Scholar 

  • Rocha B, Rigo M, Di Scala G et al (1994) Chronic mianserin or eltoprazine treatment in rats: effects on the elevated plus-maze test and on limbic 5-HT2C receptor levels. Eur J Pharmacol 262:125–131

    Article  PubMed  CAS  Google Scholar 

  • Rocha VM, Calil CM, Ferreira R et al (2007) Influence of anabolic steroid on anxiety levels in sedentary male rats. Stress Int J Biol Stress 10:326–331

    Article  CAS  Google Scholar 

  • Rodgers RJ, Cutler MG, Jackson JE (1997a) Behavioural effects in mice of subchronic buspirone, ondansetron and tianeptine. II. The elevated plus-maze. Pharmacol Biochem Behav 56:295–303

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cutler MG, Jackson JE (1997b) Behavioural effects in mice of subchronic chlordiazepoxide, maprotiline and fluvoxamine. II. The elevated plus-maze. Pharmacol Biochem Behav 57:127–136

    Article  PubMed  CAS  Google Scholar 

  • Rohmer JG, Di Scala G, Sandner G (1990) Behavioral analysis of the effects of benzodiazepine receptor ligands in the conditioned burying paradigm. Behav Brain Res 38:45–54

    Article  PubMed  CAS  Google Scholar 

  • Rowlett JK, Tornatzky W, Cook JM et al (2001) Zolpidem, triazolam, and diazepam decrease distress vocalizations in mouse pups: differential antagonism by flumazenil and beta-carboline-3-carboxylate-t-butyl ester (beta-CCt). J Pharmacol Exp Ther 297:247–253

    PubMed  CAS  Google Scholar 

  • Rudzik AD, Hester JB, Tang AH et al (1973) Triazolobenzodiazepines, a new class of central nervous system depressant compounds. In: Mussini E, Randall LO (eds) The Benzodiazepines. Raven Press, New York, pp 285–326

    Google Scholar 

  • Sakaue M, Ago Y, Sowa C et al (2003) The 5-HT1A receptor agonist MKC-242 increases the exploratory activity of mice in the elevated plus-maze. Eur J Pharmacol 458:141–144

    Article  PubMed  CAS  Google Scholar 

  • Salome N, Stemmelin J, Cohen C et al (2006) Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol Biochem Behav 83:533–539

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C (2003) Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur J Pharmacol 463:133–143

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Meier E (1997) Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology 129:97–205

    Article  Google Scholar 

  • Sanchez C, Arnt J, Moltzen E (1996) Assessment of relative efficacies of 5-HT1A receptor ligands by means of in vivo animal models. Eur J Pharmacol 315:245–254

    Article  PubMed  CAS  Google Scholar 

  • Sanger DJ (1990) Effects of buspirone and related compounds on suppressed operant responding in rats. J Pharmacol Exp Ther 254:420–426

    PubMed  CAS  Google Scholar 

  • Sanger DJ (1992) Increased rates of responding produced by buspirone-like compounds in rats. J Pharmacol Exp Ther 261:513–517

    PubMed  CAS  Google Scholar 

  • Santos JM, Gargaro AC, Oliveira AR et al (2005) Pharmacological dissociation of moderate and high contextual fear as assessed by freezing behavior and fear-potentiated startle. Eur Neuropsychopharmacol 15:239–246

    Article  PubMed  CAS  Google Scholar 

  • Savić MM, Obradović DI, Ugresić ND et al (2004) Bidirectional effects of benzodiazepine binding site ligands in the elevated plus-maze: differential antagonism by flumazenil and beta-CCt. Pharmacol Biochem Behav 79:279–290

    Article  PubMed  CAS  Google Scholar 

  • Schefke DM, Fontana DJ, Commissaris RJ (1989) Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology (Berl) 99:427–429

    Article  CAS  Google Scholar 

  • Schreiber R, Melon C, De Vry J (1998) The role of 5-HT receptor subtypes in the anxiolytic effects of selective serotonin reuptake inhibitors in the rat ultrasonic vocalization test. Psychopharmacology 135:383–391

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Fendt M, Gasparini F et al (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41:1–7

    Article  PubMed  CAS  Google Scholar 

  • Seo JJ, Lee SH, Lee YS et al (2007) Anxiolytic-like effects of obovatol isolated from magnolia obovata: involvement of GABA. Prog Neuropsychopharmacol Biol Psychiatry 31:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal C, Wagnon J, Tonnerre B et al (2005) An overview of SSR149415, a selective nonpeptide vasopressin V-1b receptor antagonist for the treatment of stress-related disorders. CNS Drug Rev 11:53–68

    PubMed  CAS  Google Scholar 

  • Sheehan DV, Raj AB, Sheehan KH et al (1988) The relative efficacy of buspirone, imipramine and placebo in panic disorder: a preliminary report. Pharmacol Biochem Behav 29:815–817

    Article  PubMed  CAS  Google Scholar 

  • Sheehan DV, Raj AB, Sheehan KH et al (1990) Is buspirone effective for panic disorder? J Clin Psychopharmacol 10:3–11

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Matsumoto K, Osanai M et al (1995) The modified light/dark transition test in mice, evaluation of classic and putative anxiolytic and anxiogenic drugs. Gen Pharmacol 26:5

    Google Scholar 

  • Si WC, Xiao JM, Rui W et al (2005) Behavioral effects of sinomenine in murine models of anxiety. Life Sci 78:232–238

    Article  CAS  Google Scholar 

  • Siemiatkowski M, Maciejak P, Sienkiewicz-Jarosz H et al (2001) Opposite effects of olanzapine and haloperidol in rat ultrasonic vocalization test. Pol J Pharmacol 53:669–673

    Article  PubMed  CAS  Google Scholar 

  • Sikiric P, Jelovac N, Jelovac-Gjeldum A et al (2001) Anxiolytic effect of BPC-157, a gastric pentadecapeptide: shock probe/burying test and light. Acta Pharmacologica Sinica 22:225–230

    PubMed  CAS  Google Scholar 

  • Silva RCB, Brandao ML (2000) Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol Biochem Behav. 65:209–216

    Article  PubMed  CAS  Google Scholar 

  • Silva MTA, Alves CRR, Santarem EMM (1999) Anxiogenic-like effect of acute and chronic fluoxetine on rats tested on the elevated plus-maze. Braz J Med Biol Res 32:333–339

    PubMed  CAS  Google Scholar 

  • Soderpalm B, Hjorth S, Engel JA (1989) Effects of 5-HT1A receptor agonists and L-5-HTP in Montgomery’s conflict test. Pharmacol Biochem Behav 32:259–265

    Article  PubMed  CAS  Google Scholar 

  • Soderpalm B, Lundin B, Hjorth S (1993) Sustained 5-hydroxytryptamine release-inhibitory and anxiolytic-like action of the partial 5-HT1A receptor agonist, buspirone, after prolonged chronic treatment. Eur J Pharmacol 239:69–73

    Article  PubMed  CAS  Google Scholar 

  • Soman I, Mengi SA, Kasture SB (2004) Effect of leaves of Butea frondosa on stress, anxiety, and cognition in rats. Pharmacol Biochem Behav 79(1):11–16

    Article  PubMed  CAS  Google Scholar 

  • Sommermeyer H, Schreiber R, Greuel JM et al (1993) Anxiolytic effects of the 5-HT1A receptor agonist ipsapirone in the rat: neurobiological correlates. Eur J Pharmacol 240:29–37

    Article  PubMed  CAS  Google Scholar 

  • Starr KR, Price GW, Watson JM et al (2007) SB-649915-B, a novel 5-HT1A. Neuropsychopharmacology 32:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Stefanski R, Palejko W, Kotowski W (1992) The comparison of benzodiazepine derivatives and serotonergic agonists and antagonists in two animal models of anxiety. Neuropharmacology (Berl) 31:1252–1258

    Google Scholar 

  • Stemmelin J, Cohen C, Terranova JP et al (2008) Stimulation of the beta(3)-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 33:574–587

    Article  PubMed  CAS  Google Scholar 

  • Tatarczyńska E, Kłodzińska A, Stachowicz K et al (2004) Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol 15:523–534

    Article  PubMed  Google Scholar 

  • Tizzano JP, Griffey KI, Schoepp DD (2002) The anxiolytic action of mGlu2. Pharmacol Biochem Behav 73:367–374

    Article  PubMed  CAS  Google Scholar 

  • Tokumo K, Tamura N, Hirai T et al (2006) Effects of (Z)-3-hexenol, a major component of green odor, on anxiety-related behavior of the mouse in an elevated plus-maze test and biogenic amines and their metabolites in the brain. Behav Brain Res 166:247–252

    Article  PubMed  CAS  Google Scholar 

  • Treit D (1985a) Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 9:203–222

    Article  PubMed  CAS  Google Scholar 

  • Treit D (1985b) The inhibitory effect of diazepam on defensive burying: anxiolytic vs analgesic effects. Pharmacol Biochem Behav 22:47–52

    Article  PubMed  CAS  Google Scholar 

  • Treit D (1987) Ro 15–1788, CGS8216, picrotoxin, and pentyleneterazol: do they antagonize anxiolytic drug effects through an anxiogenic action? Brain Res Bull 19:401–405

    Article  PubMed  CAS  Google Scholar 

  • Treit D (1990) A comparison of anxiolytic and nonanxiolytic agents in the shock probe burying test for anxiolytics. Pharmacol Biochem Behav 36:203–205

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Fundytus M (1988) A comparison of buspirone and chlordiazepoxide in the shock probe burying test for anxiolytics. Pharmacol Biochem Behav 30:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Pinel JP, Fibiger HC (1981) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15:619–626

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Menard J, Royan C (1993) Anxiogenic stimuli in the elevated plus-maze. Pharmacol Biochem Behav 44:463–469

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Menard J, Pesold C (1994) The shock probe burying test. Neurosci Protocols Mod 3:9–17

    Google Scholar 

  • Treit D, Degroot A, Kashluba S, Bartoszyk GD (2001) Systemic EMD 68843 injections reduce anxiety in the shock-probe, but not the plus-maze test. Eur J Pharmacol 414:245–248

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Degroot A, Shah A (2003) Animal models of anxiety and anxiolytic drug action. In: Kasper S, den Boer JA, Ad Sitsen JM (eds) Handbook of depression and anxiety: a biological approach. New York, Marcel Dekker, pp 681–702

    Google Scholar 

  • Tsuda A, Ida Y, Tanaka M (1988) The contrasting effects of diazepam and yohimbine on conditioned defensive burying in rats. Psychobiology 16:213–217

    CAS  Google Scholar 

  • Tyrer P, Tyrer J (1994) Antidepressive drugs for treatment of anxiety disorders – and vice versa. In: den Boer JA, Ad Sitsen JM (eds) Handbook of depression and anxiety: a biological approach. New York, Marcel Dekker, pp 497–514

    Google Scholar 

  • Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J (2004) Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46:966–973

    Article  PubMed  CAS  Google Scholar 

  • Vaidya AH, Rosenthal DI, Lang W et al (2005) Oral buspirone causes a shift in the dose-response curve between the elevated-plus maze and vogel conflict tests in Long-Evans rats: relation of brain levels of buspirone and 1-PP to anxiolytic action. Meth Find Exp Clin Pharmacol 27:245–255

    Article  CAS  Google Scholar 

  • Vargas KM, Da Cunha C, Andreatini R (2006) Amphetamine and pentylenetetrazole given post-trial 1 enhance one-trial tolerance to the anxiolytic effect of diazepam in the elevated plus-maze in mice. Prog Neuropsychopharmacol Biol Psychiatry 30:1394–1402

    Article  PubMed  CAS  Google Scholar 

  • Vigliecca NS, Molina SC, Peñalva MC (2007) A panic experimental model: validation of a complex operant behavioral method in undernourished rats, with desipramine to provide a template effect profile. J Pharmacol Toxicol Method 55:49–57

    Article  CAS  Google Scholar 

  • Vignes M, Maurice T, Lante F et al (2006) Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115

    Article  PubMed  CAS  Google Scholar 

  • Violle N, Messaoudi M, Lefranc-Millot C et al (2006) Ethological comparison of the effects of a bovine alpha(s1)-casein tryptic hydrolysate and diazepam on the behaviour of rats in two models of anxiety. Pharmacol Biochem Behav 84:517–523

    Article  PubMed  CAS  Google Scholar 

  • Vis P, Della Pasqua O, Kruk M et al (2001) Population pharmacokinetic-pharmacodynamic modelling of S 15535, a 5-MT1A receptor agonist, using a behavioural model in rats. Eur J Pharmacol 414:233–243

    Article  PubMed  CAS  Google Scholar 

  • Vivian JA, Miczek KA (1993) Diazepam and gepirone selectively attenuate either 20–32 or 32–64 kHz ultrasonic vocalizations during aggressive encounters. Psychopharmacology 112:66–73

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (1997) Anxiogenic effects of high illumination levels assessed with the acoustic startle response in rats. Biol Psychiat 42:461–471

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (2002) Light-enhanced startle: further pharmacological and behavioral characterization. Psychopharmacology 159:304–310

    Article  PubMed  CAS  Google Scholar 

  • Wei XY, Yang JY, Wang JH et al (2007) Anxiolytic effect of saponins from panax quinquefolium in mice. J Ethnopharmacol 111:613–618

    Article  PubMed  CAS  Google Scholar 

  • Weissman BA, Barrett JE, Brady LS et al (1984) Behavioral and neurochemical studies on the anticonflict actions of buspirone. Drug Dev Res 4:83–93

    Article  CAS  Google Scholar 

  • Wesolowska A, Nikiforuk A (2007) Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 52:1274–1283

    Article  PubMed  CAS  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K et al (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586

    Article  PubMed  CAS  Google Scholar 

  • Wesołowska A, Paluchowska M, Chojnacka-Wójcik E (2003) Involvement of presynaptic 5-HT(1A) and benzodiazepine receptors in the anticonflict activity of 5-HT(1A) receptor antagonists. Eur J Pharmacol 471:27–34

    Article  PubMed  CAS  Google Scholar 

  • Westen D, Rosenthal R (2003) Quantifying construct validity: two simple measures. JPSP 84:608–618

    Google Scholar 

  • Wheatley D (1982) Buspirone: multicenter efficacy study. J Clin Psychiat 43:92–94

    CAS  Google Scholar 

  • Wilson MA, Burghardt PR, Ford KA et al (2004) Anxiolytic effects of diazepam and ethanol in two behavioral models: comparison of males and females. Pharmacol Biochem Behav 78:445–458

    Article  PubMed  CAS  Google Scholar 

  • Winslow JT, Noble PL, Davis M (2007) Modulation of fear-potentiated startle and vocalizations in juvenile rhesus monkeys by morphine, diazepam, and buspirone. Biol Psychiatry 61:389–395

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Perez LA (1990) Comparison of anticonflict effects of buspirone and gepirone with benzodiazepines and antagonists of dopamine and serotonergic receptors in rats. Behav Pharmacol 1:247–254

    Article  Google Scholar 

  • Wood MD, Reavill C, Trail B et al (2001) SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology 41:186–199

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Anwyl R, DeVry J et al (1997) Effect of repeated ipsapirone treatment on hippocampal excitatory synaptic transmission in the freely behaving rat: role of 5-HT1A receptors and relationship to anxiolytic effect. Eur J Pharmacol 323:59–68

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Oishi R, Gomita Y (1995) Anticonflict effects of acute and chronic treatments with buspirone and gepirone in rats. Pharmacol Biochem Behav 50:477–479

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Kato A, Kanemasa T et al (2005) Pharmacological profiles of benzodiazepinergic hypnotics and correlations with receptor subtypes. Nihon Shinkei Seishin Yakurigaku Zasshi 25(3):143–151

    PubMed  CAS  Google Scholar 

  • Yoon BH, Jung JW, Lee JJ et al (2007) Anxiolytic-like effects of sinapic acid in mice. Life Sci 81:234–240

    Article  PubMed  CAS  Google Scholar 

  • Young R, Johnson DN (1991a) A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol Biochem Behav 40:739–743

    Article  PubMed  CAS  Google Scholar 

  • Young R, Johnson DN (1991b) Comparison of routes of administration and time course effects of zacopride and buspirone in mice using an automated light/dark test. Pharmacol Biochem Behav 40:733–737

    Article  PubMed  CAS  Google Scholar 

  • Young R, Urbancic A, Emrey TA et al (1987) Behavioral effects of several anxiolytics and putative anxiolytics. Eur J Pharmacol 143:361–371

    Article  PubMed  CAS  Google Scholar 

  • Young R, Batkai S, Dukat M et al (2006) TDIQ (5, 6, 7, 8-tetrahydro-1, 3-dioxolo[4, 5-g]isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacol Biochem Behav 84:62–73

    Article  PubMed  CAS  Google Scholar 

  • Zanoli P, Rivasi M, Baraldi M (2002) Pharmacological activity of hyperforin acetate in rats. Behav Pharmacol 13:645–651

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallas Treit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Treit, D., Engin, E., McEown, K. (2009). Animal Models of Anxiety and Anxiolytic Drug Action. In: Stein, M., Steckler, T. (eds) Behavioral Neurobiology of Anxiety and Its Treatment. Current Topics in Behavioral Neurosciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_17

Download citation

Publish with us

Policies and ethics