Skip to main content

Developing Small Molecule Nonpeptidergic Drugs for the Treatment of Anxiety Disorders: Is the Challenge Still Ahead?

  • Chapter
  • First Online:
Behavioral Neurobiology of Anxiety and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 2))

Abstract

Neuropeptide systems have been considered a major opportunity for the development of novel treatment approaches for anxiety disorders based on preclinical evidence and neurochemical alterations seen in anxiety disorders. This excitement was further facilitated by the fact that drugs acting at these systems, such as CRF1 antagonists, NK1 antagonists, NK3 antagonists or CCK2 antagonists, may have unique properties not seen with drugs affecting more classical mechanisms involved in anxiety. Consequently, there have been major efforts to develop such small-molecule, nonpeptide receptor ligands. A number of these molecules have been tested in the clinic, either in trials where levels of anxiety served as a secondary measure, or in a few studies with patients suffering from anxiety disorders. But unfortunately, and despite all the efforts of the field as a whole, we still lack convincing clinical proof-of-concept for any of the neuropeptidergic approaches in patients. It must, therefore, be concluded that neuropeptide targets remain a promising approach for the development of the next generation drugs to treat anxiety disorders, but that they continue to be high-risk targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB, Pyke RE, Costa J, Cutler NR, Schweizer E, Wilcox CS, Wisselink PG, Greiner M, Pierce MW, Pande AC (1995) A doubleblind, placebo-controlled study of a CCK-B receptor antagonist, CI-988, in patients with generalized anxiety disorder. J Clin Psychopharmacol 15:428–434

    Article  PubMed  CAS  Google Scholar 

  • Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Fujimiya M, Katsuura G, Makino S, Fujino MA, Kasuga M (2001) A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology 74:143–147

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Smith-Roe S, Newman SM, Grigoriadis DE, Kalin NH (2002) Reduction of stress-induced behaviour by antagonism of corticotropin-releasing factor 2 (CRF2) receptors in lateral septum or CRF1 receptors in amygdala. J Neurosci 22:2926–2935

    PubMed  CAS  Google Scholar 

  • Balon R, Ramesh C (1996) Calcium channel blockers for anxiety disorders? Annals Clin. Psychiatry 8:215–220

    CAS  Google Scholar 

  • Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, De Souza EB (1995) Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature 378:284–287

    Article  PubMed  CAS  Google Scholar 

  • Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T (2008) A 6-week randomized, placebo-controlled trial of CP-316, 311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry 165:617–620

    Article  PubMed  Google Scholar 

  • Biro E, Sarnyai Z, Penke B, Szabo G, Telegdy G (1993) Role of endogenous corticotropin-releasing factor in mediation of neuroendocrine and behavioural responses to cholecystokinin octapeptide sulfate ester in rats. Neuroendocrinology 57:340–345

    Article  PubMed  CAS  Google Scholar 

  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neurosci 5:514–516

    Article  PubMed  CAS  Google Scholar 

  • Bradwejn J, Koszycki D, Couetoux du Tertre A, Van Megen H, Den Boer J, Westenberg H (1994) The panicogenic effects of cholecystokinintetrapeptide are antagonized by L-365, 260, a central cholecystokinin receptor antagonist, in patients with panic disorder. Arch Gen Psychiatry 51:486–493

    Article  PubMed  CAS  Google Scholar 

  • Bradwejn J, Koszycki D, Paradis M, Reece P, Hinton J, Sedman A (1995) Effect of CI-988 on cholecystokinin tetrapeptide-induced panic symptoms in healthy volunteers. Biol Psychiatry 38:742–746

    Article  PubMed  CAS  Google Scholar 

  • Brawman-Mintzer O, Lydiard RB, Bradwejn J, Villarreal G, Knapp R, Emmanuel N, Ware MR, He Q, Ballenger JC (1997) Effects of the cholecystokinin agonist pentagastrin in patients with generalized anxiety disorder. Am J Psychiatry 154:700–702

    PubMed  CAS  Google Scholar 

  • Cano V, Caicoya E, Ruiz-Gayo M (2003) Effect of peripheral cholecystokinin receptor agonists on c-Fos expression in brain sites mediating food consumption in rats. Neurosci Lett 343:13–16

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Resstel LB, Bertoglio LJ, de Padua Carobrez A, Guimaraes FS (2009) Neuroanatomy of anxiety. In: Steckler T, Stein M (eds) Behavioral neurobiology of anxiety and its treatment. Curr Top Behav Neurol Springer, Heidelberg

    Google Scholar 

  • Carlini VP, Monzon ME, Varas MM, Cragnolini AB, Schioth HB, Scimonelli TN, De Barioglio SR (2002) Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem Biophys Res Commun 299:739–743

    Article  PubMed  CAS  Google Scholar 

  • Carlini VP, Varas MM, Cragnolini AB, Schioth HB, Scimonelli TN, De Barioglio SR (2004) Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun 313:635–641

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Hoenicke EM, Sable AI, McNutt RW, Chang KJ, Mosberg HI, Woods JH (1993) Convulsive effects of systemic administration of delta opioid agonist BW373U86 in mice. J Pharmacol Exp Ther 267:888–895

    PubMed  CAS  Google Scholar 

  • Cowley DS, Adams JB, Pyke RE, Cook J, Zaccharias P, Wingerson D, Roy-Byrne PP (1996) Effect of CI-988, a cholecystokinin-B receptor antagonist, on lactate-induced panic. Biol Psychiatry 40:550–552

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15:731–755

    Article  PubMed  CAS  Google Scholar 

  • Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Dornonville de la Cour C, Bjorkqvist M, Sandvik AK, Bakke I, Zhao CM, Chen D, Hakanson R (2001) A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept 99:141–150

    Article  PubMed  CAS  Google Scholar 

  • Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA 101:4280–4285

    Article  PubMed  CAS  Google Scholar 

  • Fossey MD, Lydiard RB, Ballenger JC, Laraia MT, Bissette G, Nemeroff CB (1996) Cerebrospinal fluid corticotropin-releasing factor concentrations in patients with anxiety disorders and normal comparison subjects. Biol Psychiatry 39:703–707

    Article  PubMed  CAS  Google Scholar 

  • Furmark T, Appel L, Michelgard A, Wahlstedt K, Ahs F, Zancan S, Jacobsson E, Flyckt K, Grohp M, Bergstrom M, Pich EM, Nilsson LG, Bani M, Langstrom B, Fredrikson M (2005) Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR205171, citalopram, or placebo. Biol Psychiatry 58:132–142

    Article  PubMed  CAS  Google Scholar 

  • Goddard AW, Woods SW, Money R, Pande AC, Charney DS, Goodman WK, Heninger GR, Price LH (1999) Effects of the CCK(B) antagonist CI-988 on responses to mCPP in generalized anxiety disorder. Psychiatry Res 85:225–240

    Article  PubMed  CAS  Google Scholar 

  • Gold PW, Pigott TA, Kling MA, Kalogeras K, Chrousos GP (1988) Basic and clinical studies with corticotropin-releasing hormone. Implications for a possible role in panic disorder. Psychiatric Clin North Am 11:327–334

    CAS  Google Scholar 

  • Hargreaves R (2002) Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J Clin Psychiatry 63(Suppl 11):18–24

    PubMed  CAS  Google Scholar 

  • Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54:1389–1398

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Bartfai T, Bloom F (2003) Neuropeptides: opportunities for drug discovery. Lancet Neurol 2:463–472

    Article  PubMed  Google Scholar 

  • Holmes A, Heilig M, Rupniak NMJ, Steckler T, Griebel G (2003) Neuropeptide systems as therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580–588

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F, von Bardeleben U, Buller R, Heuser I, Steiger A (1987) Stimulation response to corticotropin-releasing hormone (CRH) in patients with depression, alcoholism and panic disorder. Horm Metabol Res Suppl 16:80–88

    CAS  Google Scholar 

  • Holst B, Cygankiewicz A, Halkjar JT, Ankersen M, Schwartz TW (2003) High constitutive signaling of the ghrelin receptor-identification of a potent inverse agonist. Mol Endocrinol 17:2201–2210

    Article  PubMed  CAS  Google Scholar 

  • Holst B, Brandt E, Bach A, Heding A, Schwartz TW (2005) Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling. Mol Endocrinol 19:2400–2411

    Article  PubMed  CAS  Google Scholar 

  • Holst B, Lang M, Brandt E, Bach A, Howard A, Frimurer TM, Beck-Sickinger A, Schwartz TW (2006) Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Mol Pharmacol 70:936–946

    Article  PubMed  CAS  Google Scholar 

  • Horn TL, Harder JB, Johnson WD, Curry PT, Parchment RE, Morrissey RL, Mellick PW, Calis KA, Gold PW, Rice KC, Contoreggi C, Charney DS, Cizza G, Glaze ER, Tomaszewski JE, McCormick DL (2008) Integration of in vivo and in vitro approaches to characterize the toxicity of Antalarmin, a corticotropin-releasing hormone receptor antagonist. Toxicology 248:8–17

    Article  PubMed  CAS  Google Scholar 

  • Ising M, Zimmermann US, Kunzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE (2007) High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Akiyoshi J, Kitaichi T, Matsushita H, Tanaka E, Kodama K, Hanada H, Isogawa K (2006) Administration of antisense DNA for ghrelin causes an antidepressant and anxiolytic response in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 30:1403–1407

    Article  CAS  Google Scholar 

  • Kask A, Rago L, Wikberg JE, Schioth HB (1998) Evidence for involvement of the melanocortin MC4 receptor in the effects of leptin on food intake and body weight. Eur J Pharmacol 360:15–19

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, Hargreaves R, Hietala J, Lines C, Beebe K, Reines S (2006) Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 59:216–223

    Article  PubMed  CAS  Google Scholar 

  • Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler NR, Ballenger JC, Patterson WM, Mendels J, Chenault A, Shrivastava R, Matzura-Wolfe D, Lines C, Reines S (1995) A placebo-controlled trial of L-365, 260, a CCKB antagonist, in panic disorder. Biol Psychiatry 37:462–466

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, Ghosh K, Ball WA, Reines SA, Munjack D, Apter JT, Cunningham L, Kling M, Bari M, Getson A, Lee Y (2004) Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29:385–392

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg G, Berger P, Tauber RF, Bandelow B, Henkel V, Heuser I (2005) Randomized, double-blind study of SR142801 (Osanetant). A novel neurokinin-3 (NK3) receptor antagonist in panic disorder with pre- and posttreatment cholecystokinin tetrapeptide (CCK-4) challenges. Pharmacopsychiatry 38:25–29

    Article  Google Scholar 

  • Landgraf R (1985) Plasma oxytocin concentrations in man after different routes of administration of synthetic oxytocin. Exp Clin Endocrinol 85:245–248

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R (2005) Neuropeptides in anxiety modulation. Handb Exp Pharmacol 169:335–369

    Article  PubMed  CAS  Google Scholar 

  • Lines C, Challenor J, Traub M (1995) Cholecystokinin and anxiety in normal volunteers: an investigation of the anxiogenic properties of pentagastrin and reversal by the cholecystokinin receptor subtype B antagonist L-365, 260. Br J Clin Pharmacol 39:235–242

    Article  PubMed  CAS  Google Scholar 

  • Ma JN, Schiffer HH, Knapp AE, Wang J, Wong KK, Currier EA, Owens M, Nash NR, Gardell LR, Brann MR, Olsson R, Burstein ES (2007) Identification of the atypical L-type Ca2+ channel blocker diltiazem and its metabolites as ghrelin receptor agonists. Mol Pharmacol 72:380–386

    Article  PubMed  CAS  Google Scholar 

  • Makrigiannakis A, Zoumakis E, Kalantaridou S, Chrousos G, Gravanis A (2004) Participation of maternal and fetal CRH in early phases of human implantation: the role of antalarmin. Curr Drug Targets Immune Endocr Metabol Disord 4:75–78

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Slate SO, Geraci M, Roscow-Terrill D, Uhde TW (1997) A comparison of the effects of intravenous pentagastrin on patients with social phobia, panic disorder and healthy controls. Neuropsychopharmacology 16:229–237

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Reisine TD, Skirboll L, Beinfeld M, Kiss JZ (1985) Cholecystokinin in the medial parvocellular subdivision of the paraventricular nucleus. Co-existence with corticotropin-releasing hormone. Ann N Y Acad Sci 448:152–156

    Article  PubMed  CAS  Google Scholar 

  • Michelgard A, Appel L, Pissiota A, Frans O, Langstrom B, Bergstrom M, Fredrikson M (2007) Symptom provocation in specific phobia affects the substance P neurokinin-1 receptor system. Biol Psychiatry 61:1002–1006

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Bremner JD, Foa EB, Mayberg HS, North CS, Stein MB (2006) Posttraumatic stress disorder: a state-of-the-science review. J Psychiatric Res 40:1–21

    Article  Google Scholar 

  • Pande AC, Greiner M, Adams JB, Lydiard RB, Pierce MW (1999) Placebo-controlled trial of the CCK-B antagonist, CI-988, in panic disorder. Biol Psychiatry 46:860–862

    Article  PubMed  CAS  Google Scholar 

  • Rinaman L, Hoffman GE, Dohanics J, Le WW, Stricker EM, Verbalis JG (1995) Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 360:246–256

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NM, Webb JK, Fisher A, Smith D, Boyce S (2003) The substance P (NK1) receptor antagonist L-760735 inhibits fear conditioning in gerbils. Neuropharmacology 44:516–523

    Article  PubMed  CAS  Google Scholar 

  • Sahuque LL, Kullberg EF, Mcgeehan AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF (2006) Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology 186:122–132

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Fernandez C, Gonzalez C, Mercer LD, Beart PM, Ruiz-Gayo M, Fernandez-Alfonso MS (2003) Cholecystokinin induces cerebral vasodilatation via presynaptic CCK2 receptors: new implications for the pathophysiology of panic. J Cereb Blood Flow Metabol 23:364–370

    CAS  Google Scholar 

  • Skuladottir GV, Jonsson L, Skarphedinsson JO, Mutulis F, Muceniece R, Raine A, Mutule I, Helgason J, Prusis P, Wikberg JE, Schioth HB (1999) Long term orexigenic effect of a novel melanocortin 4 receptor selective antagonist. Br J Pharmacol 126:27–34

    Article  PubMed  CAS  Google Scholar 

  • Smoller JW, Rosenbaum JF, Biederman J, Kennedy J, Dai D, Racette SR, Laird NM, Kagan J, Snidman N, Hirshfeld-Becker D, Tsuang MT, Sklar PB, Slaugenhaupt SA (2003) Association of a genetic marker at the corticotropin-releasing hormone locus with behavioral inhibition. Biol Psychiatry 54:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Smoller JW, Yamaki LH, Fagerness JA, Biederman J, Racette S, Laird NM, Kagan J, Snidman N, Faraone SV, Hirshfeld-Becker D, Tsuang MT, Slaugenhaupt SA, Rosenbaum JF, Sklar PB (2005) The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biol Psychiatry 57:1485–1492

    Article  PubMed  CAS  Google Scholar 

  • Sramek JJ, Kramer MS, Reines SA, Cutler NR (1994–1995) Pilot study of a CCKB antagonist in patients with panic disorder: preliminary findings. Anxiety 1:141–143

    PubMed  Google Scholar 

  • Steckler T (2005) CRF antagonists as novel treatment strategies for stress-related disorders. In: Steckler T, Kalin NH, Reul JMHM (eds) Handbook of stress and the brain, part 2: integrative and clinical aspects. Elsevier, Amsterdam, pp 373–407

    Chapter  Google Scholar 

  • Steckler T (2008) Peptide receptor ligands to treat anxiety disorders. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Elsevier, Amsterdam, pp 157–221

    Chapter  Google Scholar 

  • Steckler T, Dautzenberg F (2006) Corticotropin-releasing factor antagonists in affective disorders and drug dependence – an update. CNS Neurol Disorders Drug Targets 5:147–165

    Article  CAS  Google Scholar 

  • Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46:1480–1508

    Article  PubMed  CAS  Google Scholar 

  • Steckler T, Stein MB, Holmes A (2008) Developing novel anxiolytics: improving preclinical detection and clinical assessment. In: McArthur R, Borsini F (eds) Animal and translational models for CNS discovery, vol 1. Elsevier, Amsterdam, pp 117–132

    Chapter  Google Scholar 

  • Strohle A, Kellner M, Holsboer F, Wiedemann K (2001) Anxiolytic activity of atrial natriuretic peptide in patients with panic disorder. Am J Psychiatry 158:1514–1516

    Article  PubMed  CAS  Google Scholar 

  • Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–991

    Article  PubMed  CAS  Google Scholar 

  • Van Megen HJ, Westenberg HG, Den Boer JA, Slaap B, Van Es-Radhakishun F, Pande AC (1997) The cholecystokinin-B receptor antagonist CI-988 failed to affect CCK-4 induced symptoms in panic disorder patients. Psychopharmacology 129:243–248

    Article  PubMed  Google Scholar 

  • Van Vliet IM, Westenberg HG, Slaap BR, Den Boer JA, Ho Pian KL (1997) Anxiogenic effects of pentagastrin in patients with social phobia and healthy controls. Biol Psychiatry 42:76–78

    Article  PubMed  Google Scholar 

  • Wiedemann K, Jahn H, Yassouridis A, Kellner M (2001) Anxiolyticlike effects of atrial natriuretic peptide on cholecystokinin tetrapeptide-induced panic attacks: preliminary findings. Arch Gen Psychiatry 58:371–377

    Article  PubMed  CAS  Google Scholar 

  • Yajima Y, Narita M, Takahashi-Nakano Y, Misawa M, Nagase H, Mizoguchi H, Tseng LF, Suzuki T (2000) Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res 862:120–126

    Article  PubMed  CAS  Google Scholar 

  • Yehuda R, Giller EL, Southwick SM, Lowry MT, Mason JW (1991) Hypothalamic-pituitary-adrenal dysfunction in posttraumatic stress disorder. Biol Psychiatry 30:1031–1048

    Article  PubMed  CAS  Google Scholar 

  • Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatric Res 34:171–181

    Article  CAS  Google Scholar 

  • Zorrilla EP, Koob GF (2004) The therapeutic potential of CRF1 antagonists for anxiety. Exp Opin Invest Drugs 13:799–828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Steckler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steckler, T. (2009). Developing Small Molecule Nonpeptidergic Drugs for the Treatment of Anxiety Disorders: Is the Challenge Still Ahead?. In: Stein, M., Steckler, T. (eds) Behavioral Neurobiology of Anxiety and Its Treatment. Current Topics in Behavioral Neurosciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_14

Download citation

Publish with us

Policies and ethics