Skip to main content

Molecular Mechanism and Cannabinoid Pharmacology

  • Chapter
  • First Online:
Substance Use Disorders

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 258))

Abstract

Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abood ME, Ditto KA, Noel MA et al (1997) Isolation and expression of mouse CB1 cannabinoid receptor gene: comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells. Biochem Pharmacol 53:207–214

    Article  CAS  PubMed  Google Scholar 

  • Adams R, Aycock BF, Loewe S (1948a) Tetrahydrocannabinol homologs. J Am Chem Soc 70:662–664. https://doi.org/10.1021/ja01182a067

    Article  CAS  PubMed  Google Scholar 

  • Adams R, Mackenzie S, Loewe S (1948b) Tetrahydrocannabinol homologs with doubly branched alkyl groups in the 3-position. J Am Chem Soc 70:664–668. https://doi.org/10.1021/ja01182a068

    Article  CAS  PubMed  Google Scholar 

  • Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K (2016) Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. Chem Rev 116:519–560. https://doi.org/10.1021/acs.chemrev.5b00411

    Article  CAS  PubMed  Google Scholar 

  • Ahn H, Mahmoud MM, Shim JY, Kendall DA (2013) Distinct roles of beta-arrestin 1 and beta-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor 1 (CB1). J Biol Chem 288:9790–9800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Whiteside G, Fowler CJ, Hohmann AG (2009) Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Rev 60:255–266. https://doi.org/10.1016/j.brainresrev.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Castillo PE, Manzoni OJ, Tonini R (2017) Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 124:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachhuber MA, Saloner B, Cunningham CO, Barry CL (2014) Medical cannabis laws and opioid analgesic overdose mortality in the United States, 1999-2010. JAMA Intern Med 174:1668–1673. https://doi.org/10.1001/jamainternmed.2014.4005

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagher AM, Laprairie RB, Kelly ME, Denovan-Wright EM (2013) Co-expression of the human cannabinoid receptor coding region splice variants (hCB(1)) affects the function of hCB(1) receptor complexes. Eur J Pharmacol 721:341–354

    Article  CAS  PubMed  Google Scholar 

  • Baillie GL, Horswill JG, Anavi-Goffer S et al (2013) CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity. Mol Pharmacol 83:322–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker D, Pryce G, Davies WL, Hiley CR (2006) In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Bari M, Battista N, Fezza F et al (2005) Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. J Biol Chem 280:12212–12220

    Article  CAS  PubMed  Google Scholar 

  • Barnett-Norris J, Lynch D, Reggio PH (2005) Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sci 77:1625–1639

    Article  CAS  PubMed  Google Scholar 

  • Barrus DG, Lefever TW, Wiley JL (2018) Evaluation of reinforcing and aversive effects of voluntary Δ9-tetrahydrocannabinol ingestion in rats. Neuropharmacology 137:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Chicca A, Tamborrini M et al (2012) Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem 287:36944–36967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beardsley PM, Scimeca JA, Martin BR (1987) Studies on the agonistic activity of delta 9-11-tetrahydrocannabinol in mice, dogs and rhesus monkeys and its interactions with delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 241:521–526

    CAS  PubMed  Google Scholar 

  • Benard G, Massa F, Puente N et al (2012) Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat Neurosci 15:558–564

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shabat S, Fride E, Sheskin T et al (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 353:23–31

    Article  CAS  PubMed  Google Scholar 

  • Bisogno T, Melck D, Gretskaya NM et al (2000) N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J 351:817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisogno T, Howell F, Williams G et al (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankman JL, Cravatt BF (2013) Chemical probes of endocannabinoid metabolism. Pharmacol Rev 65:849–871. https://doi.org/10.1124/pr.112.006387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonner TI (1996) Molecular biology of cannabinoid receptors. J Neuroimmunol 69:15–17

    Article  Google Scholar 

  • Braida D, Pozzi M, Parolaro D, Sala M (2001) Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol 413:227–234

    Article  CAS  PubMed  Google Scholar 

  • Braida D, Losue S, Pegorini S, Sala M (2004) Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol 506:63–69

    Article  CAS  PubMed  Google Scholar 

  • Breivogel CS, Puri V, Lambert JM et al (2013) The influence of beta-arrestin2 on cannabinoid CB1 receptor coupling to G-proteins and subcellular localization and relative levels of beta-arrestin1 and 2 in mouse brain. J Recept Signal Transduct Res 33:367–379

    Article  CAS  PubMed  Google Scholar 

  • Buckley NE, McCoy KL, Mezey É et al (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur J Pharmacol 396:141–149. https://doi.org/10.1016/S0014-2999(00)00211-9

    Article  CAS  PubMed  Google Scholar 

  • Cairns EA, Szczesniak AM, Straiker AJ et al (2017) The in vivo effects of the CB1-positive allosteric modulator GAT229 on intraocular pressure in ocular normotensive and hypertensive mice. J Ocul Pharmacol Ther 33:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capdevila JH, Falck JR, Imig JD (2007) Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int 72:683–689

    Article  CAS  PubMed  Google Scholar 

  • Celofiga A, Koprivsek J, Klavz J (2014) Use of synthetic cannabinoids in patients with psychotic disorders: case series. J Dual Diagn 10:168–173

    Article  PubMed  Google Scholar 

  • Chakrabarti A, Onaivi ES, Chaudhuri G (1995) Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein. DNA Seq 5:385–388

    Article  CAS  PubMed  Google Scholar 

  • Chen JK, Chen J, Imig JD et al (2008) Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J Biol Chem 283:24514–24524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zheng C, Qian J et al (2014) Involvement of beta-arrestin-2 and clathrin in agonist-mediated internalization of the human cannabinoid CB2 receptor. Curr Mol Pharmacol 7:67–80

    Article  CAS  PubMed  Google Scholar 

  • Cichewicz DL, Martin ZL, Smith FL, Welch SP (1999) Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification. J Pharmacol Exp Ther 289:859–867

    CAS  PubMed  Google Scholar 

  • Cichewicz DL, Haller VL, Welch SP (2001) Changes in opioid and cannabinoid receptor protein following short-term combination treatment with delta(9)-tetrahydrocannabinol and morphine. J Pharmacol Exp Ther 297:121–127

    CAS  PubMed  Google Scholar 

  • Cichewicz DL, Welch SP, Smith FL (2005) Enhancement of transdermal fentanyl and buprenorphine antinociception by transdermal Δ9-tetrahydrocannabinol. Eur J Pharmacol 525:74–82. https://doi.org/10.1016/j.ejphar.2005.09.039

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Merlin M (2013) Cannabis: evolution and ethnobotany. University of California Press, Berkeley

    Google Scholar 

  • Coleman RA, Haynes EB (1986) Monoacylglycerol acyltransferase. Evidence that the activities from rat intestine and suckling liver are tissue-specific isoenzymes. J Biol Chem 261:224–228

    CAS  PubMed  Google Scholar 

  • Compton DR, Martin BR (1990) Pharmacological evaluation of water soluble cannabinoids and related analogs. Life Sci 46:1575–1585. https://doi.org/10.1016/0024-3205(90)90391-4

    Article  CAS  PubMed  Google Scholar 

  • Compton DR, Gold LH, Ward SJ et al (1992a) Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 263:1118–1126

    CAS  PubMed  Google Scholar 

  • Compton DR, Johnson MR, Melvin LS, Martin BR (1992b) Pharmacological profile of a series of bicyclic cannabinoid analogs: classification as cannabimimetic agents. J Pharmacol Exp Ther 260:201–209

    CAS  PubMed  Google Scholar 

  • Compton DR, Rice KC, De Costa BR et al (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265:218–226

    CAS  PubMed  Google Scholar 

  • Console-Bram L, Marcu J, Abood ME (2012) Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry 38:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox ML, Haller VL, Welch SP (2007) Synergy between delta9-tetrahydrocannabinol and morphine in the arthritic rat. Eur J Pharmacol 567:125–130

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP et al (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP et al (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cridge BJ, Rosengren RJ (2013) Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag Res 5:301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daigle TL, Kearn CS, Mackie K (2008) Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology 54:36–44

    Article  CAS  PubMed  Google Scholar 

  • Dalton GD, Howlett AC (2012) Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells. Br J Pharmacol 165:2497–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt L, Ferrari AJ, Calabria B et al (2013) The global epidemiology and contribution of Cannabis use and dependence to the global burden of disease: results from the GBD 2010 study. PLoS One 8:e76635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devane WA, Dysarz FA III, Johnson MR et al (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17(9):623–639

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Bisogno T, Sugiura T et al (1998) The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. Biochem J 331:15–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Alonso J, Guzman M, Galve-Roperh I (2012) Endocannabinoids via CB1 receptors act as neurogenic niche cues during cortical development. Philos Trans R Soc Lond B Biol Sci 367:32293241

    Article  CAS  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM et al (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donvito G, Nass SR, Wilkerson JL et al (2018) The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology 43:52–79. https://doi.org/10.1038/npp.2017.204

    Article  CAS  PubMed  Google Scholar 

  • Egertova M, Giang DK, Cravatt BF, Elphick MR (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc Natl Acad Sci U S A 265:2081–2085

    CAS  Google Scholar 

  • Eldeeb K, Leone-Kabler S, Howlett AC (2016) CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function. J Basic Clin Physiol Pharmacol 27(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldeeb K, Leone-Kabler S, Howlett AC (2017) Mouse neuroblastoma CB1 cannabinoid receptor-stimulated [(35)S]GTPS binding: total and antibody-targeted G alpha protein-specific scintillation proximity assays. Methods Enzymol 593:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElSohly MA, Radwan MM, Gul W et al (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36

    CAS  PubMed  Google Scholar 

  • Fallon MT, Albert Lux E, McQuade R et al (2017) Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies. Br J Pain 11:119–133. https://doi.org/10.1177/2049463717710042

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattore L, Cossu G, Martellotta CM, Fratta W (2001) Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology 156:410–416

    Article  CAS  PubMed  Google Scholar 

  • Fay X, Farrens Y (2015) Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1. Proc Natl Acad Sci U S A 112:8469–8474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615–639

    Article  CAS  Google Scholar 

  • Ford BM, Tai S, Fantegrossi WE, Prather PL (2017) Synthetic pot: not your grandfather’s marijuana. Trends Pharmacol Sci 38:257–276. https://doi.org/10.1016/j.tips.2016.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin JM, Vasiljevik T, Prisinzano TE, Carrasco GA (2013) Cannabinoid agonists increase the interaction between beta-arrestin 2 and ERK1/2 and upregulate beta-arrestin 2 and 5-HT(2A) receptors. Pharmacol Res 68:46–58

    Article  CAS  PubMed  Google Scholar 

  • Freeman MJ, Rose DZ, Myers MA et al (2013) Ischemic stroke after use of the synthetic marijuana “spice”. Neurology 81:2090–2093

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaffuri AL, Ladarre D, Lenkei Z (2012) Type-1 cannabinoid receptor signaling in neuronal development. Pharmacology 90:19–39

    Article  CAS  PubMed  Google Scholar 

  • Galiegue S, Mary S, Marchand J et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  CAS  PubMed  Google Scholar 

  • Gamage TF, Ignatowska-jankowska BM, Wiley JL et al (2014) In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behav Pharmacol 25:182–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647. https://doi.org/10.1021/ja01062a046

    Article  CAS  Google Scholar 

  • Garcia AB, Soria-Gomez E, Bellocchio L, Marsicano G (2016) Cannabinoid receptor type-1: breaking the dogmas. F1000Res 5:990

    Article  CAS  Google Scholar 

  • Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular-cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerostamoulos D, Drummer OH, Woodford NW (2015) Deaths linked to synthetic cannabinoids. Forensic Sci Med Pathol 11:478

    Article  PubMed  Google Scholar 

  • Glass M, Northup JK (1999) Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol Pharmacol 56:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318

    Article  CAS  PubMed  Google Scholar 

  • Godlewski G, Offertaler L, Wagner JA, Kunos G (2009) Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat 89:3–4

    Article  CAS  Google Scholar 

  • Grim TW, Morales AJ, Gonek MM et al (2016) Stratification of cannabinoid 1 receptor (CB1R) agonist efficacy: manipulation of CB1R density through use of transgenic mice reveals congruence between in vivo and in vitro assays. J Pharmacol Exp Ther 359:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grim TW, Morales AJ, Thomas BF et al (2017) Apparent CB1 receptor rimonabant affinity estimates: combination with THC and synthetic cannabinoids in the mouse in vivo triad model. J Pharmacol Exp Ther 362:210–218. https://doi.org/10.1124/jpet.117.240192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotenhermen F, Muller-Vahl K (2012) The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int 109:495–501

    PubMed  PubMed Central  Google Scholar 

  • Gulyas AI, Cravatt BF, Bracey MH et al (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458

    Article  CAS  PubMed  Google Scholar 

  • Haj-Dahmane S, Shen RY, Elemes MW et al (2018) Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc Natl Acad Sci U S A 115:3482–3487

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampson AJ, Hill WA, Zan-Phillips M et al (1995) Anandamide hydroxylation by brain lipoxygenase: metabolite structures and potencies at the cannabinoid receptor. Biochim Biophys Acta 1259:173–179

    Article  PubMed  Google Scholar 

  • Han J, Kesner P, Metna-Laurent M et al (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Hanus L, Abu-Lafi S, Fride E et al (2001) 2-arachidonyl glycerol ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A 98:3662–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasin DS, Kerridge BT, Saha TD et al (2016) Prevalence and correlates of DSM-5 Cannabis use disorder, 2012-2013: findings from the national epidemiologic survey on alcohol and related conditions–III. Am J Psychiatry 173:588–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasler JA, Estabrook RMM, Pikuleva IA et al (1999) Human cytochromes P450. Mol Asp Med 20:1–137

    Article  CAS  Google Scholar 

  • Heimann AS, Gomes I, Dale CS et al (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci U S A 104:20588–20593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel BJ, Wakeford AG, Clasen MM et al (2016) Delta-9-tetrahydrocannabinol (THC) history fails to affect THC’s ability to induce place preferences in rats. Pharmacol Biochem Behav 144:1–6

    Article  CAS  PubMed  Google Scholar 

  • Henriksson BG, Johansson JO, Järbe TUC (1975) Δ9-tetrahydrocannabinol produced discrimination in pigeons. Pharmacol Biochem Behav 5:771–774. https://doi.org/10.1016/0091-3057(75)90105-7

    Article  Google Scholar 

  • Herkenham M, Lynn AB, Little MD et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87:1932–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs HN, Glomset JA (1994) Identification of a phosphatidic acid-preferring phospholipase A1 from bovine brain and testis. Proc Natl Acad Sci U S A 91:9574–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillard CJ (2000) Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3–18

    Article  CAS  PubMed  Google Scholar 

  • Hillard CJ, Harris RA, Bloom AS (1985) Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies. J Pharmacol Exp Ther 232:579–588

    CAS  PubMed  Google Scholar 

  • Hillard CJ, Pounds JJ, Boyer DR, Bloom AS (1990) Studies of the role of membrane lipid order in the effects of delta 9-tetrahydrocannabinol on adenylate cyclase activation in heart. J Pharmacol Exp Ther 252:1075–1082

    CAS  PubMed  Google Scholar 

  • Hiratsuka M, Nozawa H, Katsumoto Y et al (2006) Genetic polymorphisms and haplotype structures of the CYP4A22 gene in a Japanese population. Mutat Res 599:98–104

    Article  CAS  PubMed  Google Scholar 

  • Ho BY, Zhao J (1996) Determination of the cannabinoid receptors in mouse x rat hybridoma NG108-15 cells and rat GH4C1 cells. Neurosci Lett 212:123–126

    Article  CAS  PubMed  Google Scholar 

  • Horswill JG, Bali U, Shaaban S et al (2007) PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 2:805–814

    Google Scholar 

  • Houston DB, Howlett AC (1993) Solubilization of the cannabinoid receptor from rat brain and its functional interaction with guanine nucleotide-binding proteins. Mol Pharmacol 43:17–22

    CAS  PubMed  Google Scholar 

  • Howlett AC, Abood ME (2017) CB1 and CB2 receptor pharmacology. Adv Pharmacol 80:169–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 29:307–313

    CAS  PubMed  Google Scholar 

  • Howlett AC, Johnson MR, Melvin LS, Milne GM (1988) Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol 33:297–302

    CAS  PubMed  Google Scholar 

  • Howlett AC, Barth F, Bonner TI et al (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  PubMed  Google Scholar 

  • Hsu KL, Tsuboi K, Adibekian A et al (2012) DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat Chem Biol 8:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman JW, Zengin G, Wu MJ et al (2005) Structure–activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg Med Chem 13:89–112

    Article  CAS  PubMed  Google Scholar 

  • Ignatowska-Jankowska BM, Baillie GL, Kinsey S et al (2015) A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 40:2948–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyasov AA, Milligan CE, Pharr EP, Howlett AC (2018) The endocannabinoid system and oligodendrocytes in health and disease. Front Neurosci 12:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagla CAD, Scott CE, Tang Y et al (2019) Primidinyl bipheylureas act as allosteric modulators to activate cannabinoid receptor 1 and initiate B-arrestin-dependent responses. Mol Pharmacol 95:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Järbe TUC, Gifford RS (2014) “Herbal incense”: designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci 97:64–71. https://doi.org/10.1016/j.lfs.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  • JÄrbe TUC, Henriksson BG (1973) Acute effects of two tetrahydrocannabinols (Δ9-THC and Δ8-THC) on water intake in water deprived rats: implications for behavioral studies on marijuana compounds. Psychopharmacologia 30:315–322. https://doi.org/10.1007/BF00429190

    Article  PubMed  Google Scholar 

  • JÄrbe TUC, Henriksson BG (1974) Discriminative response control produced with hashish, tetrahydrocannabinols (δ8-THC and δ9-THC), and other drugs. Psychopharmacologia 40(1):1–16. https://doi.org/10.1007/BF00429443

    Article  PubMed  Google Scholar 

  • Jarbe TU, Henriksson BG, Ohlin GC (1977) Delta9-THC as a discriminative cue in pigeons: effects of delta8-THC, CBD, and CBN. Arch Int Pharmacodyn Ther 228:68–72

    CAS  PubMed  Google Scholar 

  • Järbe TUC, Lemay BJ, Halikhedkar A et al (2014) Differentiation between low- and high-efficacy CB 1 receptor agonists using a drug discrimination protocol for rats. Psychopharmacology 231:489–500. https://doi.org/10.1007/s00213-013-3257-8

    Article  CAS  PubMed  Google Scholar 

  • Järbe TUC, Gifford RS, Zvonok A, Makriyannis A (2016a) Δ9-Tetrahydrocannabinol discriminative stimulus effects of AM2201 and related aminoalkylindole analogs in rats. Behav Pharmacol 27:211–214. https://doi.org/10.1097/FBP.0000000000000196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Järbe TUC, Lemay BJ, Thakur GA, Makriyannis A (2016b) A high efficacy cannabinergic ligand (AM4054) used as a discriminative stimulus: generalization to other adamantyl analogs and Δ9-THC in rats. Pharmacol Biochem Behav 148:46–52. https://doi.org/10.1016/j.pbb.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HE, Zhao YX, Ferguson DK et al (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108:414–422

    Article  PubMed  Google Scholar 

  • Jing L, Qiu Y, Zhang Y, Li JX (2014) Effects of the cannabinoid CB1 receptor allosteric modulator ORG 27569 on reinstatement of cocaine-and methamphetamine-seeking behavior in rats. Drug Alcohol Depend 143:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John WS, Martin TJ, Nader MA (2017) Behavioral determinants of cannabinoid self-administration in old world monkeys. Neuropsychopharmacology 42:1522–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JR, Burnell-Nugent M, Lossignol D et al (2010) Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manag 39:167–179

    Article  Google Scholar 

  • Jonsson KO, Vandevoorde SV, Lambert DM et al (2001) Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. Br J Pharmacol 133:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology 169:135–140

    Article  CAS  PubMed  Google Scholar 

  • Kano M (2014) Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci 90:235–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh H, Iwata T, Ono T, Suzuki T (1986) Immunological characterization of sn-1,2-diacylglycerol and sn-2-monoacylglycerol kinase from pig brain. J Biol Chem 261:5597–5602

    CAS  PubMed  Google Scholar 

  • Katona I, Sperlagh B, Sik A et al (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keimpema E, Mackie K, Harkany T (2011) Molecular model of cannabis sensitivity in developing neuronal circuits. Trends Pharmacol Sci 32:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana L, Mackie K, Piomelli D, Kendall DA (2017) Modulation of CB1 cannabinoid receptor by allosteric ligands: pharmacological and therapeutic opportunities. Neuropharmacology 124:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo S, Kondo H, Nakane S et al (1998) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through CA2+-dependent and -independent mechanisms. FEBS Lett 429:152–156

    Article  CAS  PubMed  Google Scholar 

  • Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 275:33744–33749

    Article  CAS  PubMed  Google Scholar 

  • Kozak KR, Crews BC, Ray JL et al (2001) Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J Biol Chem 276:36993–36998

    Article  CAS  PubMed  Google Scholar 

  • Laprairie R, Bagher A, Kelly M, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to G(q/11) G proteins. Proc Natl Acad Sci U S A 102:19144–19149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DK, Gill EW (1975) The effects of delta1-tetrahydrocannabinol and other cannabinoids on spin-labeled liposomes and their relationship to mechanisms of general anesthesia. Mol Pharmacol 11:595–602

    CAS  PubMed  Google Scholar 

  • Ledent C, Valverde O, Cossu G et al (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404. https://doi.org/10.1126/science.283.5400.401

    Article  CAS  PubMed  Google Scholar 

  • Lee MA (2013) Smoke signals: a social history of marijuana – medical, recreational and scientific. Scribner, New York

    Google Scholar 

  • Lefever TW, Marusich JA, Antonazzo KR, Wiley JL (2014) Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav 118:30–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung D, Saghatelian A, Simon GM, Cravatt BF (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45:4720–4726. https://doi.org/10.1021/bi060163l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman AH, Wiley JL, Lavecchia KL et al (1998) Effects of SR 141716A after acute or chronic cannabinoid administration in dogs. Eur J Pharmacol 357:139–148. https://doi.org/10.1016/S0014-2999(98)00558-5

    Article  CAS  PubMed  Google Scholar 

  • Lichtman AH, Lux EA, McQuade R et al (2018) Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J Pain Symptom Manag 55:179–188. https://doi.org/10.1016/j.jpainsymman.2017.09.001

    Article  Google Scholar 

  • Ligresti A, De PL, Di MV (2016) From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev 96:1593–1659

    Article  CAS  PubMed  Google Scholar 

  • Little PJ, Compton DR, Johnson MR et al (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther 247:1046–1051

    CAS  PubMed  Google Scholar 

  • Little PJ, Compton DR, Mechoulam R, Martin BR (1989) Stereochemical effects of 11-OH-Δ8-THC-dimethylheptyl in mice and dogs. Pharmacol Biochem Behav 32:661–666. https://doi.org/10.1016/0091-3057(89)90014-2

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang L, Harvey-White J et al (2006) A biosynthetic pathway for anandamide. Proc Natl Acad Sci U S A 103:13345–13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HC, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM (2014) More than just a hammer: ligand “Bias” and pharmaceutical discovery. Mol Endocrinol 28:281–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyon RC, McComb JA, Schreurs J, Goldstein DB (1981) A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J Pharmacol Exp Ther 218:669–675

    CAS  PubMed  Google Scholar 

  • Maccarrone M, Salvati S, Bari M, Finazzi A (2000) Anandamide and 2-arachidonoylglycerol inhibit fatty acid amide hydrolase by activating the lipoxygenase pathway of the arachidonate cascade. Biochem Biophys Res Commun 278:576–583

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone M, Guzman M, Mackie K et al (2014) Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie K (2006a) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    Article  CAS  PubMed  Google Scholar 

  • Mackie K (2006b) Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes 30:S19–S23

    Article  CAS  Google Scholar 

  • Maguire DR, Yang W, France CP (2013) Interactions between mu-opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration. J Pharmacol Exp Ther 345:354–362. https://doi.org/10.1124/jpet.113.204099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahavadi S, Sriwai W, Huang J et al (2014) Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/beta-arrestin activation of ERK1/2 and Src kinase. Am J Physiol Gastrointest Liver Physiol 306:G535–G545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin BR (1986) Cellular effects of cannabinoids. Pharmacol Rev 38:45–74

    CAS  PubMed  Google Scholar 

  • Martin BR, Dewey WL, Harris LS et al (1975) Marihuana like activity of new synthetic tetrahydrocannabinols. Pharmacol Biochem Behav 5:849–853. https://doi.org/10.1016/S0090-3752(76)80023-3

    Article  Google Scholar 

  • Martin BR, Jeanne Kallman M, Kaempf GF et al (1984) Pharmacological potency of R- and S-3′-hydroxy-Δ9-tetrahydrocannabinol: additional structural requirement for cannabinoid activity. Pharmacol Biochem Behav 21:61–65. https://doi.org/10.1016/0091-3057(84)90131-X

    Article  CAS  PubMed  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  PubMed  Google Scholar 

  • McAllister SD, Glass M (2002) CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:161–171

    Article  CAS  PubMed  Google Scholar 

  • McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, Shvo Y (1963) Hashish I. The structure of cannabidiol. Tetrahedron 19:2073–2078. https://doi.org/10.1016/0040-4020(63)85022-X

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, McCallum N, Burstein S (1976) Recent advances in the chemistry and biochemistry of cannabis. Chem Rev 76:75–112

    Article  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Hanus LO, Pertwee R, Howlett AC (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    Article  CAS  PubMed  Google Scholar 

  • Melck D, Bisogno T, De Petrocellis L et al (1999) Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem Biophys Res Commun 262:275–284

    Article  CAS  PubMed  Google Scholar 

  • Mendizabal V, Zimmer A, Maldonado R (2006) Involvement of kappa/dynorphin system in WIN 55, 212-2 self-administration in mice. Neuropsychopharmacology 31:1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Monti L, Steanucci A, Pieretti S et al (2016) Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates. J Enzyme Inhib Med Chem 31:1638–1647

    Article  CAS  PubMed  Google Scholar 

  • Motaghedi R, Lipman EG, Hogg JE et al (2011) Psychiatric adverse effects of Rimonobant in adults with Prader-Willi syndrome. Eur J Med 54:14–18

    Google Scholar 

  • Mukhopadhyay S, Howlett AC (2001) CB1 receptor-G protein association. Subtype selectivity is determined by distinct intracellular domains. Eur J Biochem 268:499–505

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Howlett AC (2005) Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol 67:2016–2024

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC (2000) The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 57:162–170

    CAS  PubMed  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  CAS  PubMed  Google Scholar 

  • Murataeva N, Straiker A, Mackie K (2014) Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. Br J Pharmacol 171:1379–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane S, Oka S, Arai S et al (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 402:51–58

    Article  CAS  PubMed  Google Scholar 

  • Navarro HA, Howard JL, Pollard GT, Carroll F (2009) Positive allosteric modulation of the human cannabinoid (CB1) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol 156:1178–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS (2018) Addressing the opioid crisis: the importance of choosing translational endpoints in analgesic drug discovery. Trends Pharmacol Sci 39:327–330. https://doi.org/10.1016/j.tips.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS (2019) Core outcome measures in preclinical assessment of candidate analgesics. Pharmacol Rev 71:225–266. https://doi.org/10.1124/pr.118.017210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Sabioni P, Trigo JM et al (2017) Opioid-sparing effect of cannabinoids: a systematic review and meta-analysis. Neuropsychopharmacology 42:1752–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueras-Ortiz C, Yudowski GA (2016) The multiple waves of cannabinoid 1 receptor signaling. Mol Pharmacol 90:620–626

    Article  CAS  PubMed  Google Scholar 

  • Nomura DK, Morrison BE, Blankman JL et al (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan SE, Kendall DA (2010) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215:611–616

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K et al (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    Article  CAS  PubMed  Google Scholar 

  • Okazaki H, Kobayashi M, Momohara A et al (2011) Early Holocene coastal environment change inferred from deposits at Okinoshima archeological site, Boso Peninsula, Central Japan. Quat Int 230:87–94

    Article  Google Scholar 

  • Oliveira da Cruz JF, Robin LM, Drago F et al (2016) Astroglial type-1 cannabinoid receptor (CB1): a new player in the tripartite synapse. Neuroscience 323:35–42

    Article  CAS  PubMed  Google Scholar 

  • Owens RA, Mustafa MA, Ignatowska-Jankowska BM et al (2017) Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB1 receptor-mediated discriminative stimulus in mice. Neuropharmacology 125:80–86. https://doi.org/10.1016/j.neuropharm.2017.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamplona FA, Ferreira J, Menezes de Lima O et al (2012) Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A 109:21134–21139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pars HG, Granchelli FE, Razdan RK et al (1976) Drugs derived from cannabinoids. 1. nitrogen analogs, benzopyranopyridines and benzopyranopyrroles. J Med Chem 19(4):445–454. https://doi.org/10.1021/jm00226a001

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (2015) Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol 231:1–37. https://doi.org/10.1007/978-3-319-20825-1_1

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev 62:588–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikuleva IA, Waterman MR (2013) Cytochromes p450: roles in diseases. J Biol Chem 288:17091–17098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineiro R, Falasca M (2012) Lysophosphatidylinositol signalling: new wine from an old bottle. Biochim Biophys Acta 1821:694–705

    Article  CAS  PubMed  Google Scholar 

  • Pisanti S, Bifulco M (2019) Medical Cannabis: a plurimillennial history of an evergreen. J Cell Physiol 234:8342–8351

    Article  CAS  PubMed  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD et al (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Prather PL, Martin NA, Breivogel CS, Childers SR (2000) Activation of cannabinoid receptors in rat brain by WIN 55212-2 produces coupling to multiple G protein alpha-subunits with different potencies. Mol Pharmacol 57:1000–1010

    CAS  PubMed  Google Scholar 

  • Prescott SM, Majerus PW (1983) Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl monoacylglycerol intermediate. J Biol Chem 258:764–769

    CAS  PubMed  Google Scholar 

  • Price MR, Baillie GL, Thomas A et al (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Priestly RS, Nickolls SA, Alexander SP, Kendall DA (2015) A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J 29:1446–1455

    Article  CAS  Google Scholar 

  • Puighermanal E, Marsicano G, Busquets-Garcia A et al (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12:1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Héaulme M et al (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244. https://doi.org/10.1016/0014-5793(94)00773-X

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Calandra B, Shire D et al (1996) Characterization of two cloned human CB1 cannabinoid receptor isoforms. J Pharmacol Exp Ther 278:871–878

    CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Millan J et al (1998) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650

    CAS  PubMed  Google Scholar 

  • Rubino T, Vigano D, Premoli F et al (2006) Changes in the expression of G protein-coupled receptor kinases and beta-arrestins in mouse brain during cannabinoid tolerance: a role for RAS-ERK cascade. Mol Neurobiol 33:199–213

    Article  CAS  PubMed  Google Scholar 

  • Ryberg E, Vu HK, Larsson N et al (2005) Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett 579:259–264

    Article  CAS  PubMed  Google Scholar 

  • SAMHSA (2017) Results from the 2016 national survey on drug use and health: detailed tables. In: Prevalence estimates, standard errors, P values, and sample sizes. Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality, Rockville

    Google Scholar 

  • Seeling W, Kneer L, Buchele B et al (2006) DELTA9-tetrahydrocannabinol and the opioid receptor agonist piritramide do not act synergistically in postoperative pain. Anaesthesist 55:391–400

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24(4):583–655

    CAS  PubMed  Google Scholar 

  • Setchell KD, Schwarz M, O’Connell NC et al (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102:1690–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shire D, Carillon C, Kaghad M et al (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270:3726–3731

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ (1999) Synaptic transmission and cellular signaling: an overview. In: Agranoff MD, Albers BW, Fisher RW, Uhler SK (eds) Basic neurochemistry. Lippincott-R, Philadelphia

    Google Scholar 

  • Sigel E, Baur R, Racz I et al (2011) The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A 108:18150–18155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J Biol Chem 281:26465–26472

    Article  CAS  PubMed  Google Scholar 

  • Slivicki RA, Saberi SA, Iyer V et al (2018a) Brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase synergize with the opioid analgesic morphine to suppress chemotherapy-induced neuropathic nociception without enhancing effects of morphine on gastrointestinal transit. J Pharmacol Exp Ther 367:551–563. https://doi.org/10.1124/jpet.118.252288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slivicki RA, Xu Z, Kulkarni PM et al (2018b) Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol Psychiatry 84:722–733

    Article  CAS  PubMed  Google Scholar 

  • Smith FL, Cichewicz D, Martin ZL, Welch SP (1998) The enhancement of morphine antinociception in mice by Δ9-tetrahydrocannabinol. Pharmacol Biochem Behav 60:559. https://doi.org/10.1016/S0091-3057(98)00012-4

    Article  CAS  PubMed  Google Scholar 

  • Snider NT, Walker VJ, Hollenberg PF (2010) Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 62:136–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soethoudt M, Grether U, Fingerle J et al (2017) Cannabinoid CB 2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 8:13958. https://doi.org/10.1038/ncomms13958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas M, Panlilio LV, Justinova Z et al (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206. https://doi.org/10.1038/nprot.2006.167

    Article  CAS  PubMed  Google Scholar 

  • Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Straiker A, Wager-Miller J, Hutchens J, Mackie K (2012) Differential signalling in human cannabinoid CB1 receptors and their splice variants in autaptic hippocampal neurons. Br J Pharmacol 165:2660–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A et al (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Tsuboi K, Okamoto Y et al (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J 380:749–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    Article  CAS  Google Scholar 

  • Tanda G (2016) Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology 233:1845–1866. https://doi.org/10.1007/s00213-016-4244-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov P, Bezrukova E, Karabanov E et al (2007) Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 252:440–457

    Article  Google Scholar 

  • Thomas BF, Compton DR, Martin BR (1990) Characterization of the lipophilicity of natural and synthetic analogs of delta 9-tetrahydrocannabinol and its relationship to pharmacological potency. J Pharmacol Exp Ther 255:624–630

    CAS  PubMed  Google Scholar 

  • Thomas BF, Adams IB, Mascarella SW et al (1996) Structure-activity analysis of anandamide analogs: relationship to a cannabinoid pharmacophore. J Med Chem 39:471–479. https://doi.org/10.1021/jm9505167

    Article  CAS  PubMed  Google Scholar 

  • Tsou K, Brown S, Sanudo-Pena MC et al (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  CAS  PubMed  Google Scholar 

  • Turu G, Hunyady L (2010) Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol 44:75–85

    Article  CAS  PubMed  Google Scholar 

  • Vallee M, Vitiello S, Bellocchio L et al (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakeford AGP, Wetzell BB, Pomfrey RL et al (2017) The effects of cannabidiol (CBD) on Delta(9)-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats. Exp Clin Psychopharmacol 25:242–248

    Article  CAS  PubMed  Google Scholar 

  • Walton RP, Martin LF, Keller JH (1938) The relative activity of various purified products obtained from American hashish. J Pharmacol Exp Ther 62:239–251

    CAS  Google Scholar 

  • Welch SP, Stevens DL (1992) Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J Pharmacol Exp Ther 262:10–18

    CAS  PubMed  Google Scholar 

  • Whiting PF, Wolff RF, Deshpande S et al (2015) Cannabinoids for medical use: a systematic review and meta-analysis. J Am Med Assoc 313:2456–2473

    Article  CAS  Google Scholar 

  • Wiley JL, Martin BR (2003) Cannabinoid pharmacological properties common to other centrally acting drugs. Eur J Pharmacol 471:185–193. https://doi.org/10.1016/S0014-2999(03)01856-9

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Lowe JA, Balster RL, Martin B (1995) Antagonism of the discriminative stimulus effects of in rats and rhesus monkeys. J Pharmacol Exp Ther 275:1–6

    CAS  PubMed  Google Scholar 

  • Wiley JL, Compton DR, Dai D et al (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    CAS  PubMed  Google Scholar 

  • Wiley JL, Marusich JA, Thomas BF (2017) Combination chemistry: structure-activity relationships of novel psychoactive cannabinoids. Curr Top Behav Neurosci 32:231–248. https://doi.org/10.1007/7854_2016_17

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Owens RA, Lichtman AH (2018) Discriminative stimulus properties of phytocannabinoids, endocannabinoids, and synthetic cannabinoids. Curr Top Behav Neurosci 39:153–173. https://doi.org/10.1007/7854_2016_24

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson JL, Niphakis MJ, Grim TW et al (2016) The selective monoacylglycerol lipase inhibitor MJN110 produces opioid-sparing effects in a mouse neuropathic pain model. J Pharmacol Exp Ther 357:145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkerson JL, Ghosh S, Mustafa M et al (2017) The endocannabinoid hydrolysis inhibitor SA-57: intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114:156–167. https://doi.org/10.1016/j.neuropharm.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  • Willoughby KA, Moore SF, Martin BR, Ellis EF (1997) The biodisposition and metabolism of anandamide in mice. J Pharmacol Exp Ther 282:243–247

    CAS  PubMed  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410:588–592

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Poe AR, Morgan MM, Aicher SA, Hegarty DM (2012) Distribution of CB1 cannabinoid receptors and their relationship with mu-opioid receptors in the rat periaqueductal gray. Neuroscience 103:449–449. https://doi.org/10.1016/j.neuroscience.2012.03.038

    Article  CAS  Google Scholar 

  • Wilson-Poe AR, Pocius E, Herschbach M, Morgan MM (2013) The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. Pharmacol Biochem Behav 103:449–449. https://doi.org/10.1016/j.pbb.2012.10.002

    Article  CAS  Google Scholar 

  • Xiao JC, Jewell JP, Lin LS et al (2008) Similar in vitro pharmacology of human cannabinoid CB1 receptor variants expressed in CHO cells. Brain Res 1238:36–43

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fukaya M, Uchigashima M et al (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangen A, Solinas M, Ikernoto S et al (2006) Two brain sites for cannabinoid reward. J Neurosci 26:4901–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  • Zendulka O, Dovrtelova G, Noskova K et al (2016) Cannabinoids and cytochrome P450 interactions. Curr Drug Metab 17:206–226

    Article  CAS  PubMed  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG et al (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R01 DA039942 (DAK, LD, AHL), R01 DA042157 (ACH), P50 DA006634 (ACH), and VCU School of Pharmacy start-up funds (AHL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron H. Lichtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schurman, L.D., Lu, D., Kendall, D.A., Howlett, A.C., Lichtman, A.H. (2019). Molecular Mechanism and Cannabinoid Pharmacology. In: Nader, M., Hurd, Y. (eds) Substance Use Disorders. Handbook of Experimental Pharmacology, vol 258. Springer, Cham. https://doi.org/10.1007/164_2019_298

Download citation

Publish with us

Policies and ethics