Skip to main content

Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder

  • Chapter
  • First Online:
Substance Use Disorders

Abstract

Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations – where DNA is modified to increase or decrease the probability of gene expression at key genes – have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168

    Article  CAS  PubMed  Google Scholar 

  • Aguilar MA, Rodríguez-Arias M, Miñarro J (2009) Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev 59:253–277

    Article  PubMed  Google Scholar 

  • Ahmed SH et al (2005) Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc Natl Acad Sci 102:11533–11538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaghband Y, Bredy TW, Wood MA (2016) The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action. Neurosci Lett. https://doi.org/10.1016/j.neulet.2016.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaghband Y et al (2018) CREST in the nucleus accumbens core regulates cocaine conditioned place preference, cocaine-seeking behavior, and synaptic plasticity. J Neurosci 38:9514–9526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcón JM et al (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    Article  PubMed  Google Scholar 

  • Anderson SM, Pierce RC (2005) Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther 106:389–403

    Article  CAS  PubMed  Google Scholar 

  • Anderson EM et al (2017) Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. J Neurosci 38:1657–1617

    Google Scholar 

  • Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35:2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachtell RK, Self DW (2008) Renewed cocaine exposure produces transient alterations in nucleus accumbens AMPA receptor-mediated behavior. J Neurosci 28:12808–12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Andresen D, Ratnu VS, Bredy TW (2013) Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci 36:3–13

    Article  CAS  PubMed  Google Scholar 

  • Baker-Andresen D et al (2015) Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in mice. Neuroepigenetics 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bali P, Im H-I, Kenny PJ (2011) Methylation, memory and addiction. Epigenetics 6:671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes CE, English DM, Cowley SM (2019) Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett RM, Wood MA (2008) Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn Mem 15:460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett RM et al (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateup HS et al (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11:932–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baubec T, Schübeler D (2014) Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Dev 25:85–92

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  PubMed  Google Scholar 

  • Beitner-Johnson D, Nestler EJ (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem 57:344–347

    Article  CAS  PubMed  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407

    Article  CAS  PubMed  Google Scholar 

  • Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertran-Gonzalez J et al (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. https://doi.org/10.1101/gad.947102.6

    Article  CAS  PubMed  Google Scholar 

  • Bocklisch C et al (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Boutrel B et al (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 102:19168–19173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brami-Cherrier K (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25:11444–11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredy T (2013) The 6Th base: TET3-mediated DNA hydroxymethylation regulates the formation of memory for fear extinction. Biol Psychiatry 73:5S

    Article  Google Scholar 

  • Bredy TW et al (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14(4):268–276. https://doi.org/10.1101/lm.500907.lation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breiter HC et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  CAS  PubMed  Google Scholar 

  • Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339

    Article  CAS  PubMed  Google Scholar 

  • Calipari ES, Ferris MJ, Zimmer BA, Roberts DC, Jones SR (2013) Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 38(12):2385–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipari ES, Jones SR (2014) Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration. Neuropharmacology 82:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipari ES, Ferris MJ, Siciliano CA, Zimmer BA, Jones SR (2014) Intermittent cocaine self-administration produces sensitization of stimulant effects at the dopamine transporter. J Pharmacol Exp Ther 349(2):192–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calipari ES, Siciliano CA, Zimmer BA, Jones SR (2015) Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacology 40(3):728–735

    Article  CAS  PubMed  Google Scholar 

  • Calipari ES et al (2016) In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci 113:2726–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipari ES et al (2017) Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun 8:13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipari ES et al (2019) Synaptic microtubule-associated protein EB3 and SRC phosphorylation mediate structural and behavioral adaptations during withdrawal from cocaine self-administration. J Neurosci. pii: 0024-19. https://doi.org/10.1523/JNEUROSCI.0024-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron CM, Murugan M, Choi JY, Engel EA, Witten IB (2019) Increased cocaine motivation is associated with degraded spatial and temporal representations in IL-NAc neurons. Neuron. https://doi.org/10.1016/J.NEURON.2019.04.015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campanac E, Hoffman DA (2013) Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex. J Neurophysiol 109:2781–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell RR, Wood MA (2019) How the epigenome integrates information and reshapes the synapse. Nat Rev Neurosci 20:133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2:1–9

    Article  Google Scholar 

  • Caputi FF et al (2014) Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 49:36–46

    Article  CAS  PubMed  Google Scholar 

  • Carouge D, Host L, Aunis D, Zwiller J, Anglard P (2010) CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis 38:414–424

    Article  CAS  PubMed  Google Scholar 

  • Chandra R et al (2015) Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action. J Neurosci 35:7927–7937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R et al (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci 103:9333–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childress AR et al (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli A, Giustetto M (2014) Role of ERK signaling in activity-dependent modifications of histone proteins. Neuropharmacology 80:34–44

    Article  CAS  PubMed  Google Scholar 

  • Collins AL, Aitken TJ, Greenfield VY, Ostlund SB, Wassum KM (2016) Nucleus accumbens acetylcholine receptors modulate dopamine and motivation. Neuropsychopharmacology 41:2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad KL et al (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dackis C, O’Brien C (2005) Neurobiology of addiction: treatment and public policy ramifications. Nat Neurosci 8:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz X, Lois S, Sánchez-Molina S, Martínez-Balbás MA (2005) Do protein motifs read the histone code? Bioessays 27:164–175

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  • de Wit H (1996) Priming effects with drugs and other reinforcers. Exp Clin Psychopharmacol 4:5–10

    Article  Google Scholar 

  • Deng JV et al (2011) Behavioral responses to psychostimulants. Nat Neurosci 13:1128–1136

    Article  CAS  Google Scholar 

  • Dudai Y, Morris RGM (2013) Memorable trends. Neuron 80:742–750

    Article  CAS  PubMed  Google Scholar 

  • Dulac C (2010) Brain function and chromatin plasticity. Nature 465:728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell MR et al (2019) Ventral pallidum is essential for cocaine reinstatement after voluntary abstinence. bioRxiv:653741. https://doi.org/10.1101/653741

  • Farrelly LA et al (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris SP, Harris RA, Ponomarev I (2015) Epigenetic modulation of brain gene networks for cocaine and alcohol abuse. Front Neurosci 9:1–10

    Article  Google Scholar 

  • Fass DM et al (2013) Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 64:81–96

    Article  CAS  PubMed  Google Scholar 

  • Feng J et al (2014) Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol 15:R65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng J et al (2015) Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci 18:536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson D et al (2015) SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci 35:3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Calipari ES, Yorgason JT, Jones SR (2013) Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices. ACS Chem Nerosci 4:693–703

    Article  CAS  Google Scholar 

  • Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13:337–356

    Article  CAS  PubMed  Google Scholar 

  • Finegersh A, Homanics GE (2016) Chromatin immunoprecipitation and gene expression analysis of neuronal subtypes after fluorescence activated cell sorting. J Neurosci Methods 263:81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischle W et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57

    Article  CAS  PubMed  Google Scholar 

  • Fouyssac M, Everitt BJ, Belin D (2017) Cellular basis of the intrastriatal functional shifts that underlie the development of habits: relevance for drug addiction. Curr Opin Behav Sci 13:144–151

    Article  Google Scholar 

  • Freeman WM et al (2008) Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology 33:1807–1817

    Article  CAS  PubMed  Google Scholar 

  • Goodwin LR, Picketts DJ (2018) The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  • Goto K et al (1994) Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56:39–44

    Article  CAS  PubMed  Google Scholar 

  • Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97

    Article  PubMed  CAS  Google Scholar 

  • Graham DL et al (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Graham DL et al (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65:696–701

    Article  CAS  PubMed  Google Scholar 

  • Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Incubation of cocaine craving after withdrawal. Nature 412:141–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm JW et al (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall FS, Drgonova J, Goeb M, Uhl GR (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28:1485

    Article  CAS  PubMed  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller EA et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller EA et al (2016) Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci 36:4690–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchcock LN, Raybuck JD, Wood MA, Lattal KM (2018) Effects of a histone deacetylase 3 inhibitor on extinction and reinstatement of cocaine self-administration in rats. Psychopharmacology (Berl). 3. doi: https://doi.org/10.1007/s00213-018-5122-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horger BA et al (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19:4110–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa HPM, Nawa H (1998) Turnover rates of the AMPA-type glutamate receptor GluR1 measured by transient gene expression. J Neurosci Methods 84:173–179

    Article  CAS  PubMed  Google Scholar 

  • Hurd YL, Weiss F, Koob G, Ungerstedt U (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neurosci Lett 109:227–233

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  • Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itzhak Y, Martin JL (2002) Cocaine-induced conditioned place preference in mice: Induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology 26:130–134

    Article  CAS  PubMed  Google Scholar 

  • Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Jaffe_COC_Craving_Psychopharm_1989.pdf

    Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5:20–25

    Article  CAS  PubMed  Google Scholar 

  • Jordi E et al (2013) Differential effects of cocaine on histone posttranslational modifications in identified populations of striatal neurons. Proc Natl Acad Sci U S A 110:9511–9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Duffy P (2002) Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J Neurochem 70:1497–1502

    Article  Google Scholar 

  • Karch KR, DeNizio JE, Black BE, Garcia BA (2013) Identification and interrogation of combinatorial histone modifications. Front Genet 4:1–15

    Article  CAS  Google Scholar 

  • Kawa AB, Allain F, Robinson TE, Samaha AN (2019) The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-019-5164-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy PJ et al (2013) Class i HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16:434–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kramar CP, Chefer VI, Wise RA, Medina JH, Barbano MF (2014) Dopamine in the dorsal hippocampus impairs the late consolidation of cocaine-associated memory. Neuropsychopharmacology 39:1645–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314

    Article  CAS  PubMed  Google Scholar 

  • Kupchik YM et al (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutlu MG, Gould TJ (2016) Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 23:515–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwapis JL et al (2018) Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat Commun 9

    Google Scholar 

  • LaPlant Q, Nestler EJ (2011) CRACKing the histone code: cocaine’s effects on chromatin structure and function. Horm Behav 59:321–330

    Article  CAS  PubMed  Google Scholar 

  • Laplant Q et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Moal M, Koob GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol 17:377–393

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426

    Article  PubMed  Google Scholar 

  • Levenson JM et al (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  CAS  PubMed  Google Scholar 

  • Levine AA et al (2005) CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A 102:19186–19191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine A et al (2011) Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci Transl Med 3:107ra109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X et al (2014) Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci U S A 111:7120–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2017) Dynamic expression changes in the transcriptome of the prefrontal cortex after repeated exposure to cocaine in mice. Front Pharmacol 8:1–10

    Google Scholar 

  • Liu Q, Pu L, Poo M (2005) Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437:1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López AJ, Wood MA (2015) Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders. Front Behav Neurosci 9:1–10

    Article  CAS  Google Scholar 

  • López AJ et al (2018) Medial habenula cholinergic signaling regulates cocaine-associated relapse-like behavior. Addict Biol. https://doi.org/10.1111/adb.12605

    Article  PubMed  PubMed Central  Google Scholar 

  • López AJ et al (2019) Epigenetic regulation of immediate-early gene Nr4a2/Nurr1 in the medial habenula during reinstatement of cocaine-associated behavior. Neuropharmacology 153:13–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loweth JA et al (2014) Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat Neurosci 17:73–80

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24:1604–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacAskill AF, Cassel JM, Carter AG (2014) Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nat Neurosci 17:1198–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNiven KH et al (2018) Association of neural responses to drug cues with subsequent relapse to stimulant use. JAMA Netw Open 1:e186466

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahler SV et al (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17(4):577–585. https://doi.org/10.1038/nn.3664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvaez M, Mhillaj E, Matheos DP, Palmery M, Wood MA (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 31:16941–16948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvaez M et al (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110:2647–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvaez M et al (2018) Habits are negatively regulated by histone deacetylase 3 in the dorsal striatum. Biol Psychiatry 84(5):383–392. https://doi.org/10.1016/j.biopsych.2018.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L et al (2012) In vivo: a differential role of NMDA receptors. Neurochem Int 59:610–617

    Article  CAS  Google Scholar 

  • Mark GP, Hajnal A, Kinney AE, Keys AS (1999) Self-administration of cocaine increases the release of acetylcholine to a greater extent than response-independent cocaine in the nucleus accumbens of rats. Psychopharmacology (Berl) 143:47–53

    Article  CAS  Google Scholar 

  • Mark GP, Shabani S, Dobbs LK, Hansen ST (2011) Cholinergic modulation of mesolimbic dopamine function and reward. Physiol Behav 104:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massart R et al (2015) Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J Neurosci 35:8042–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze I et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327:213–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze I et al (2011) Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci U S A 108:3035–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum SE, Glick SD (2009) 18-Methoxycoronaridine blocks acquisition but enhances reinstatement of a cocaine place preference. Neurosci Lett 458:57–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson PS (2015) Eating locally: microautophagy and protein turnover at the synapse. Neuron 88:619–621

    Article  CAS  PubMed  Google Scholar 

  • Ménard C, Gaudreau P, Quirion R (2015) Signaling pathways relevant to cognition-enhancing drug targets. J Dement Care 13:59–98

    Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542

    Article  CAS  PubMed  Google Scholar 

  • Mews P, Calipari ES (2017) Cross-talk between the epigenome and neural circuits in drug addiction. Prog Brain Res 235:19–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Marshall JF (2005) Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur J Neurosci 21:1385–1393

    Article  PubMed  Google Scholar 

  • Murray JE et al (2015) Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum dependent cocaine-seeking habits. Nat Commun 6:1–9

    Article  CAS  Google Scholar 

  • Mychasiuk R, Muhammad A, Ilnytskyy S, Kolb B (2013) Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav Brain Res 256:655–661

    Article  CAS  PubMed  Google Scholar 

  • Nairn AC et al (2004) The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology 47:14–23

    Article  CAS  PubMed  Google Scholar 

  • Nathan D, Sterner DE, Berger SL (2003) Histone modifications: now summoning sumoylation. Proc Natl Acad Sci 100:13118–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson ED, Monteggia LM (2011) Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol Learn Mem 96:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler EJ (2013) Cellular basis of memory for addiction. Dialogues Clin Neurosci 15:431–443

    PubMed  PubMed Central  Google Scholar 

  • Nestler EJ (2016) Reflections on: “A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function”. Brain Res 1645:71–74

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411

    Article  CAS  PubMed  Google Scholar 

  • Nott A et al (2016) Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci 19:1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numachi Y et al (2007) Methamphetamine-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Eur J Pharmacol 572:120–128

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Garcia TR et al (2019) Ventral pallidum is the primary target for accumbens D1 projections driving cocaine seeking. J Neurosci 39:2041–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park K, Volkow ND, Pan Y, Du C (2013) Chronic cocaine dampens dopamine signaling during cocaine intoxication and unbalances D1 over D2 receptor signaling. J Neurosci 33:15827–15836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoli V et al (2014) Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509:459

    Article  CAS  PubMed  Google Scholar 

  • Peixoto L, Abel T (2012) The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38:62–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pol Bodetto S et al (2013) Cocaine represses protein phosphatase-1Cβ through DNA methylation and methyl-CpG binding protein-2 recruitment in adult rat brain. Neuropharmacology 73:31–40

    Article  CAS  PubMed  Google Scholar 

  • Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renthal W et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56:517–529

    Article  CAS  PubMed  Google Scholar 

  • Renthal W et al (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ressler KJ, Paschall G, Zhou X, Davis M (2002) Regulation of synaptic plasticity genes during consolidation of fear conditioning. J Neurosci 22:7892–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155:39–55

    Article  CAS  PubMed  Google Scholar 

  • Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogge GA, Singh H, Dang R, Wood MA (2013) HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci 33:6623–6632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roidl D, Hacker C (2014) Histone methylation during neural development. Cell Tissue Res 356:539–552

    Article  CAS  PubMed  Google Scholar 

  • Romieu P et al (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28:9342–9348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2003) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  Google Scholar 

  • Rudenko A, Tsai L-H (2014) Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology 80:70–82

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ et al (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadakierska-Chudy A et al (2017) Cocaine administration and its withdrawal enhance the expression of genes encoding histone-modifying enzymes and histone acetylation in the rat prefrontal cortex. Neurotox Res 32:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salery M et al (2017) Activity-regulated cytoskeleton-associated protein accumulates in the nucleus in response to cocaine and acts as a brake on chromatin remodeling and long-term behavioral alterations. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  CAS  PubMed  Google Scholar 

  • Savell KE et al (2018) A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. bioRxiv:371500. https://doi.org/10.1101/371500

  • Schmidt HD et al (2012) Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem 120:202–209

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Stalnaker TA, Shaham Y (2007) A role for BDNF in cocaine reward and relapse. Nat Neurosci 10:935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci 100:13225–13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu G et al (2018) Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling subunit BAF53b. Learn Mem 25(3):109–115. https://doi.org/10.1101/lm.046920.117.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siciliano CA, Calipari ES, Ferris MJ, Jones SR (2015) Adaptations of presynaptic dopamine terminals induced by psychostimulant self-administration. ACS Chem Nerosci 6:27–36

    Article  CAS  Google Scholar 

  • Silva AJ (2017) Miniaturized two-photon microscope: seeing clearer and deeper into the brain. Light Sci Appl 6:e17104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorg BA, Davidson DL, Kalivas PW, Prasad BM (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J Pharmacol Exp Ther 281:54–61

    CAS  PubMed  Google Scholar 

  • Staahl BT, Crabtree GR (2013) Creating a neural specific chromatin landscape by npBAF and nBAF complexes. Curr Opin Neurobiol 23:903–913

    Article  CAS  PubMed  Google Scholar 

  • Stipanovich A et al (2008) A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan FA, Day JJ (2011) Epigenetic mechanisms in memory and synaptic function. Epigenomics 3:157–181

    Article  CAS  PubMed  Google Scholar 

  • Sun HS et al (2017) Regulation of BAZ1A and nucleosome positioning in the nucleus accumbens in response to cocaine. Neuroscience 353:1–6

    Article  CAS  PubMed  Google Scholar 

  • Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109

    Article  CAS  PubMed  Google Scholar 

  • Trantham H, Szumlinski KK, McFarland K, Kalivas PW, Lavin A (2002) Repeated cocaine administration alters the electrophysiological properties of prefrontal cortical neurons. Neuroscience 113:749–753

    Article  CAS  PubMed  Google Scholar 

  • Tweedie-Cullen RY et al (2012) Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 7:e36980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt K, Ernst C, Mash D, Turecki G (2017) DNA methylation dynamics and cocaine in the brain: progress and prospects. Genes (Basel) 8(5). pii: E138. doi: https://doi.org/10.3390/genes8050138

    Article  PubMed Central  CAS  Google Scholar 

  • Viola TW et al (2016) Increased cocaine-induced conditioned place preference during periadolescence in maternally separated male BALB/c mice: the role of cortical BDNF, microRNA-212, and MeCP2. Psychopharmacology (Berl) 233:3279–3288

    Article  CAS  Google Scholar 

  • Vogel-Ciernia A, Wood MA (2014) Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders. Neuropharmacology 80:18–27

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Ciernia A et al (2013) The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 16:552–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND et al (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J (2003) The addicted brain: insights from imaging studies. J Clin Invest 111(p):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DM, Cates HM, Heller EA, Nestler EJ (2015) Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol 30:112–121

    Article  CAS  PubMed  Google Scholar 

  • Walker DM et al (2018) Cocaine self-administration alters transcriptome-wide responses in the brain’s reward circuitry. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2009) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKII a in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35:913–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson NA, Higgins JMG (2016) Histone kinases and phosphatases. Chromatin Signal Dis:75–94. https://doi.org/10.1016/B978-0-12-802389-1.00004-6

    Chapter  Google Scholar 

  • White AOAO et al (2016) BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat Commun 7:11725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JM, Steketee JD (2005) Effects of repeated cocaine on the release and clearance of dopamine within the rat medial prefrontal cortex. Synapse 55:98–109

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I, Burgeno LM, Groblewski PA, Phillips PE (2014) Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat Neurosci 17(5):704–709. https://doi.org/10.1038/nn.3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf ME (2016) Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 17:351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR (2006) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci 81:2806–2810

    Article  Google Scholar 

  • Wood MA, Hawk JD, Abel T (2006) Combinatorial chromatin modifications and memory storage: a code for memory? Learn Mem 13:241–244

    Article  CAS  PubMed  Google Scholar 

  • Wright KN et al (2015) Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J Neurosci 35:8948–8958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yager LM, Garcia AF, Wunsch AM, Ferguson SM (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301:529–541

    Article  CAS  PubMed  Google Scholar 

  • Yorgason JT, Jones SR, España RA (2011) Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection. Neuroscience 182:125–132

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. https://doi.org/10.1101/gad.927301.vealed

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Garcia BA (2015) Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao C, Eisinger BE, Driessen TM, Gammie SC (2014) Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens. Front Behav Neurosci 8:388

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:255–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2008) Effects of cocaine place conditioning, chronic escalating-dose “binge” pattern cocaine administration and acute withdrawal on orexin/hypocretin and preprodynorphin gene expressions in lateral hypothalamus of Fischer and Sprague–Dawley rats. Neuroscience 153:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Yuan Q, Mash DC, Goldman D (2011) Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci 108:6626–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.J.L. is supported by NIH Grant K00 DA048436. C.A.S. is supported by NIH grant K99 DA045103 (NIDA) and a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation. E.S.C is supported by NIH grants R00 DA042111 and DP1 DA048931 (NIDA), a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation, and funding from the Whitehall Foundation and Edward Mallinckrodt Jr. Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin S. Calipari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López, A.J., Siciliano, C.A., Calipari, E.S. (2019). Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. In: Nader, M., Hurd, Y. (eds) Substance Use Disorders. Handbook of Experimental Pharmacology, vol 258. Springer, Cham. https://doi.org/10.1007/164_2019_257

Download citation

Publish with us

Policies and ethics