Skip to main content

Tumor Angiogenesis: General Principles and Therapeutic Approaches

  • Chapter
Tumor Ablation

Abstract

Tumor growth is dependent on angiogenesis, the process by which new capillary blood vessels are recruited and sustained. In recent years, key steps in the angiogenic process have been identified, and various angiogenesis inhibitors have been developed. These agents are now in clinical testing for cancer and a number of other diseases. In the majority of cases, angiogenesis inhibitors are being tested alone and in combination with chemotherapy for advanced or metastatic cancers. Recent evidence suggests, however, that they potentially may be beneficial in earlier stage disease (i.e., chemoprevention) or in combination with other modalities such as radiation therapy. Furthermore, tumor ablation techniques such as hyperthermia and chemoembolization work, at least in part, through effects on the tumor vasculature. Understanding mechanisms of tumor angiogenesis, therefore, may shed light on ways to inhibit tumor growth and increase the effectiveness of existing treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J, Kalluri R. Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC Jr, Holland JF, Frei III E, eds. Cancer Medicine. 6th ed. Hamilton, Ontario: B.C. Decker, 2003.

    Google Scholar 

  2. Warren BA. The vascular morphology of tumors. In: Peterson HI, ed. Tumor Blood Cir culation: Angiogenesis, Vascular Morphology, and Blood Flow of Experimental Human Tumors. Florida: CRC Press, 1979:1–47.

    Google Scholar 

  3. Coman DR, Sheldon WE The significance of hyperemia around tumor implants. Am J Pathol 1946;22:821–831.

    PubMed Central  Google Scholar 

  4. Ide AG, Baker NH, Warren SL. Vascularization of the Brown-Pearce rabbit ephithelioma transplant as seen in the transparent ear chamber. AJR 1939;42:891–899.

    Google Scholar 

  5. Algire GH, Chalkely HW, Legallais FY, Park H. Vascular reactions of normal and malignant tumors in vivo: I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 1945;6:73–85.

    Google Scholar 

  6. Folkman J. Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 1985;29:10–36.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Cole P, Zimmerman S. Tumor behav ior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 1966;164:491–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Folkman J, Long DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer 1963;16:453–467.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  10. Gimbrone MA, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972;136:261–276.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1:149–153.

    Article  PubMed  CAS  Google Scholar 

  12. Gimbrone MA Jr, Cotran RS, Folkman J. Endothelial regeneration: studies with human endothelial cells in culture. Ser Haematol 1973;6:453–455.

    PubMed  Google Scholar 

  13. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973;52:2745–2756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Folkman J, Haudenschild CC, Zetter BR. Longterm culture of capillary endothelial cells. Proc Natl Acad Sci USA 1979;76:5217–5221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982;297:307–312.

    Article  PubMed  CAS  Google Scholar 

  16. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984;223:1296–1299.

    Article  PubMed  CAS  Google Scholar 

  17. Klagsbrun M, Sasse J, Sullivan R, Smith JA. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci USA 1986;83:2448–2452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–858.

    Article  PubMed  CAS  Google Scholar 

  20. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.

    Article  PubMed  CAS  Google Scholar 

  21. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  22. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–364.

    Article  PubMed  CAS  Google Scholar 

  23. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–257.

    Article  PubMed  CAS  Google Scholar 

  24. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001;61:253–270.

    Article  PubMed  CAS  Google Scholar 

  25. Heymach JV. Angiogenesis and antiangiogenic approaches to sarcomas. Curr Opin Oncol 2001;13:261–269.

    Article  PubMed  CAS  Google Scholar 

  26. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2:737–744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR. Increased incidence of matrix metallopro-teinases in urine of cancer patients. Cancer Res 1998;58:1395–1399.

    PubMed  CAS  Google Scholar 

  28. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55–60.

    Article  PubMed  CAS  Google Scholar 

  29. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    Article  PubMed  CAS  Google Scholar 

  30. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996;87:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  31. Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development 1999;126:1149–1159.

    PubMed  CAS  Google Scholar 

  32. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986;46:5629–5632.

    PubMed  CAS  Google Scholar 

  33. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    Article  PubMed  CAS  Google Scholar 

  34. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  35. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964–3972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lyden D, Young AZ, Zagzag D, et al. Idl and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999;401:670–677.

    Article  PubMed  CAS  Google Scholar 

  37. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  38. Rafti S, Meeus S, Dias S, et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 2002;13:61–67.

    Article  CAS  Google Scholar 

  39. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952–958.

    PubMed  CAS  Google Scholar 

  40. Mancuso P, Burlini A, Pruned G, Goldhirsch A, Martinelli G, Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001;97:3658–3661.

    Article  PubMed  CAS  Google Scholar 

  41. Bertolini F, Mingrone W, Alietti A, et al. Thalidomide in multiple myeloma, myelodys-plastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann Oncol 2001;12:987–990.

    Article  PubMed  CAS  Google Scholar 

  42. Monestiroli S, Mancuso P, Burlini A, et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 2001;61:4341–4344.

    PubMed  CAS  Google Scholar 

  43. Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 2000;70:829–834.

    Article  PubMed  CAS  Google Scholar 

  44. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000;86:1198–1202.

    Article  PubMed  CAS  Google Scholar 

  45. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337–346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Udagawa T, Fernandez A, Achilles EG, Folkman J, D’Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002;16:1361–1370.

    Article  PubMed  CAS  Google Scholar 

  47. Fontanini G, Calcinai A, Boldrini L, et al. Modulation of neoangiogenesis in bronchial pre-neoplastic lesions. Oncol Rep 1999;6:813–817.

    PubMed  CAS  Google Scholar 

  48. Smith-McCune KK, Weidner N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 1994;54:800–804.

    PubMed  CAS  Google Scholar 

  49. Keith RL, Miller YE, Gemmill RM, et al. Angiogenic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin Cancer Res 2000;6:1616–1625.

    PubMed  CAS  Google Scholar 

  50. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998;58:4997–5001.

    PubMed  CAS  Google Scholar 

  51. Fidler IJ, Gersten DM, Hart IR. The biology of cancer invasion and metastasis. Adv Cancer Res 1978;28:149–250.

    Article  PubMed  CAS  Google Scholar 

  52. Nicolson GL. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 1988;7:143–188.

    Article  PubMed  CAS  Google Scholar 

  53. Zebrowski BK, Yano S, Liu W, et al. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res 1999;5:3364–3368.

    PubMed  CAS  Google Scholar 

  54. Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med 1998;49:407–424.

    Article  PubMed  CAS  Google Scholar 

  55. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988;133:95–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980;284:67–68.

    Article  PubMed  CAS  Google Scholar 

  57. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 2000;97:14608–14613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chambers AF. The metastatic process: basic research and clinical implications. Oncol Res 1999;11:161–168.

    PubMed  CAS  Google Scholar 

  59. Herbst RS, Hidalgo M, Pierson AS, Holden SN, Bergen M, Eckhardt SG. Angiogenesis inhibitors in clinical development for lung cancer. Semin Oncol 2002;29:66–77.

    Article  PubMed  CAS  Google Scholar 

  60. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989;339:58–61.

    Article  PubMed  CAS  Google Scholar 

  61. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284:808–812.

    Article  PubMed  CAS  Google Scholar 

  62. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000;289:197–1202.

    Article  Google Scholar 

  63. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002;62:4645–4655.

    PubMed  CAS  Google Scholar 

  64. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999;59:99–106.

    PubMed  CAS  Google Scholar 

  65. Wood JM, Bold G, Buchdunger E, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000;60:2178–2189.

    PubMed  CAS  Google Scholar 

  66. Lin R, LeCouter J, Kowalski J, Ferrara N. Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells. J Biol Chem 2002;277:8724–8729.

    Article  PubMed  CAS  Google Scholar 

  67. Arap W, Kolonin MG, Trepel M, et al. Steps toward mapping the human vasculature by phage display. Nat Med 2002;8:121–127.

    Article  PubMed  CAS  Google Scholar 

  68. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997;390:404–407.

    Article  PubMed  CAS  Google Scholar 

  69. Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science 2002;295:1526–1528.

    Article  PubMed  CAS  Google Scholar 

  70. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987–989.

    Article  PubMed  CAS  Google Scholar 

  71. DeVore RF, Fehrenbacher L, Herbst RS, et al. A randomized phase II trial comparing Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC. Proc Am Soc Clin Oncol 2000;19:1896.

    Google Scholar 

  72. Kuenen BC, Rosen L, Smit EF, et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 2002;20:1657–1667.

    Article  PubMed  CAS  Google Scholar 

  73. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nature Rev 2002;2:727–739.

    CAS  Google Scholar 

  74. Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001;7:1459–1465.

    PubMed  CAS  Google Scholar 

  75. Brouty-Boye D, Zetter BR. Inhibition of cell motility by interferon. Science 1980;208:516–518.

    Article  PubMed  CAS  Google Scholar 

  76. Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990;247:77–79.

    Article  PubMed  CAS  Google Scholar 

  77. Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989;56:345–355.

    Article  PubMed  CAS  Google Scholar 

  78. Bouck N. Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 1990;2:179–185.

    PubMed  CAS  Google Scholar 

  79. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79:315–328.

    Article  PubMed  Google Scholar 

  80. Mauceri HJ, Hanna NN, Beckett MA, et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998;394:287–291.

    Article  PubMed  CAS  Google Scholar 

  81. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277–285.

    Article  PubMed  Google Scholar 

  82. Maeshima Y, Colorado PC, Torre A, et al. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 2000;275:21340–21348.

    Article  PubMed  CAS  Google Scholar 

  83. Kamphaus GD, Colorado PC, Panka DJ, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000;275:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  84. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999;285:1926–1928.

    Article  PubMed  Google Scholar 

  85. Herbst RS, Tran HT, Mullani NA, et al. Phase I clinical trial of recombinant human endostatin (rHE) in patients (Pts) with solid tumors: pharmacokinetic (PK), safety and efficacy analysis using surrogate endpoints of tissue and radio-logic response. Proc Am Soc Clin Oncol 2001;20:9.

    Google Scholar 

  86. Eder JP Jr, Supko JG, Clark JW, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002;20:3772–3784.

    Article  PubMed  CAS  Google Scholar 

  87. Fontanini G, Vignati S, Boldrini L, et al. Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res 1997;3:861–865.

    PubMed  CAS  Google Scholar 

  88. Yuan A, Yu CJ, Chen WJ, et al. Correlation of total VEGF mRNA and protein expression with histologic type, tumor angiogenesis, patient survival and timing of relapse in non-small-cell lung cancer. Int J Cancer 2000;89:475–483.

    Article  PubMed  CAS  Google Scholar 

  89. George DJ, Halabi S, Shepard TF, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 2001;7:1932–1936.

    PubMed  CAS  Google Scholar 

  90. Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 2000;5(suppl l):37–44.

    Article  PubMed  CAS  Google Scholar 

  91. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995;55:4575–4580.

    PubMed  CAS  Google Scholar 

  92. Kerbel RS, Viloria-Petit A, Klement G, Rak J. ‘Accidental’ anti-angiogenic drugs, anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000;36:1248–1257.

    Article  PubMed  CAS  Google Scholar 

  93. Yang JC, Haworth L, Steinberg SM, Rosenberg SA, Novotny W. A randomized double-blind placebo-controlled trial of bevacizumab (anti-VEGF antibody) demonstrating a prolongation in time to progression in patients with metastatic renal cancer. NEJM 2003;349(5):427–434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:60–65.

    Article  PubMed  CAS  Google Scholar 

  95. Kuenen BC, Levi M, Meijers JC, et al. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients. Arterioscler Thromb Vase Biol 2002;22:1500–1505.

    Article  CAS  Google Scholar 

  96. Miller KD, Sweeney CJ, Sledge GW Jr. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 2001;19:1195–1206.

    PubMed  CAS  Google Scholar 

  97. Denekamp J. Inadequate vasculature in solid tumours: consequences for cancer research strategies. BJR Suppl 1992;24:111–117.

    PubMed  CAS  Google Scholar 

  98. Reinhold HS, Endrich B. Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 1986;2:111–137.

    Article  PubMed  CAS  Google Scholar 

  99. Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60:1878–1886.

    PubMed  CAS  Google Scholar 

  100. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001;293:293–297.

    Article  PubMed  CAS  Google Scholar 

  101. Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999;59:3374–3378.

    PubMed  CAS  Google Scholar 

  102. Belotti D, Vergani V, Drudis T, et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 1996;2:1843–1849.

    PubMed  CAS  Google Scholar 

  103. Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res 1997;57:81–86.

    PubMed  CAS  Google Scholar 

  104. Lau DH, Xue L, Young LJ, Burke PA, Cheung AT. Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer. Cancer Biother Radiopharm 1999;14:31–36.

    Article  PubMed  CAS  Google Scholar 

  105. Vacca A, Ribatti D, Iurlaro M, et al. Docetaxel versus Paclitaxel for antiangiogenesis. J Hematother Stem Cell Res 2002;l1:103–118.

    Article  Google Scholar 

  106. Sweeney CJ, Miller KD, Sissons SE, et al. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or. 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 2001;61:3369–3372.

    PubMed  CAS  Google Scholar 

  107. Vacca A, Iurlaro M, Ribatti D, et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 1999;94:4143–4155.

    PubMed  CAS  Google Scholar 

  108. Klement G, Huang P, Mayer B, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res 2002;8:221–232.

    PubMed  CAS  Google Scholar 

  109. Wang J, Lou P, Lesniewski R, Henkin J. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs 2003;14:13–19.

    Article  PubMed  Google Scholar 

  110. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS. A role for surviving in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 2002;99:4349–4354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Song CW, Kang MS, Rhee JG, Levitt SH. Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 1980;335:35–47.

    Article  PubMed  CAS  Google Scholar 

  112. Song CW, Kang MS, Rhee JG, Levitt SH. Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 1980;41:309–312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Fajardo LF, Egbert B, Marmor J, Hahn GM. Effects of hyperthermia in a malignant tumor. Cancer 1980;45:613–623.

    Article  PubMed  CAS  Google Scholar 

  114. Fajardo LF, Prionas SD, Kowalski J, Kwan HH. Hyperthermia inhibits angiogenesis. Radiat Res 1988;114:297–306.

    Article  PubMed  CAS  Google Scholar 

  115. Eikesdal HP, Bjorkhaug ST, Dahl O. Hyperthermia exhibits anti-vascular activity in the s.c. BT4An rat glioma: lack of interaction with the angiogenesis inhibitor batimastat. Int J Hyperthermia 2002;18:141–152.

    Article  PubMed  CAS  Google Scholar 

  116. Nishimura Y, Hiraoka M, Jo S, et al. Microangiographic and histologic analysis of the effects of hyperthermia on murine tumor vasculature. Int J Radiat Oncol Biol Phys 1988;15:411–420.

    Article  PubMed  CAS  Google Scholar 

  117. Badylak SF, Babbs CF, Skojac TM, Voorhees WD, Richardson RC. Hyperthermia-induced vascular injury in normal and neoplastic tissue. Cancer 1985;56:991–1000.

    Article  PubMed  CAS  Google Scholar 

  118. Song CW. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors; brief communication. J Natl Cancer Inst 1978;60:711–713.

    PubMed  CAS  Google Scholar 

  119. Fajardo LF, Prionas SD. Endothelial cells and hyperthermia. Int J Hyperthermia 1994;10:347–353.

    Article  PubMed  CAS  Google Scholar 

  120. Kanamori S, Nishimura Y, Okuno Y, Horii N, Saga T, Hiraoka M. Induction of vascular endothelial growth factor (VEGF) by hyperthermia and/or an angiogenesis inhibitor. Int J Hyperthermia 1999;15:267–278.

    Article  PubMed  CAS  Google Scholar 

  121. Ikeda S, Akagi K, Shiraishi T, Tanaka Y. Enhancement of the effect of an angiogenesis inhibitor on murine tumors by hyperthermia. Oncol Rep 1998;5:181–184.

    PubMed  CAS  Google Scholar 

  122. Nishimura Y, Murata R, Hiraoka M. Combined effects of an angiogenesis inhibitor (TNP-470) and hyperthermia. Br J Cancer 1996;73:270–274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Yano T, Tanase M, Watanabe A, et al. Enhancement effect of an anti-angiogenic agent, TNP-470, on hyperthermia-induced growth suppression of human esophageal and gastric cancers transplantable to nude mice. Anticancer Res 1995;15:1355–1358.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Heymach, J.V., Folkman, J. (2005). Tumor Angiogenesis: General Principles and Therapeutic Approaches. In: vanSonnenberg, E., McMullen, W.N., Solbiati, L., Livraghi, T., Müeller, P.R., Silverman, S.G. (eds) Tumor Ablation. Springer, New York, NY. https://doi.org/10.1007/0-387-28674-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-28674-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95539-1

  • Online ISBN: 978-0-387-28674-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics