Skip to main content

Cancer Biology

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

The process of carcinogenesis involves a number of changes in cellular phenotype, which are largely based on acquired genetic changes in cells that are not terminally differentiated. The ability of cancer cells to grow and their failure to respond to the usual controls on such proliferation are obvious features, but they also evade cell death and most have no limits on their ability to replicate beyond the limits imposed by telomere length in normal cells. In addition, they are able to stimulate the formation of blood vessels to ensure a steady supply of oxygen and nutrients, and to invade normal tissues, sometimes subverting the normal processes within those tissues. Finally, it has become increasingly apparent that cancer cells undergo a process of selection which renders the immune system ineffective. Some of these characteristics are retained by cells in culture, and an understanding of the biological properties of cancer cells will assist in the design of experiments and the interpretation of their results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer, Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Knudson, A. G., Jr. (1971) Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci USA 68, 820–823.

    Article  PubMed  Google Scholar 

  3. Kinzler, K. W., and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer, Cell 87, 159–170.

    Article  PubMed  CAS  Google Scholar 

  4. Soreide, K., Nedrebo, B. S., Knapp, J. C., Glomsaker, T. B., Soreide, J. A., and Korner, H. (2009) Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist, Surg Oncol 18, 31–50.

    Article  PubMed  Google Scholar 

  5. Darwin, C. (1859) The Origin of Species.

    Google Scholar 

  6. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers, Science 318, 1108–1113.

    Article  PubMed  CAS  Google Scholar 

  7. Hoque, M. O., Kim, M. S., Ostrow, K. L., Liu, J., Wisman, G. B., Park, H. L., Poeta, M. L., Jeronimo, C., Henrique, R., Lendvai, A., Schuuring, E., Begum, S., Rosenbaum, E., Ongenaert, M., Yamashita, K., Califano, J., Westra, W., van der Zee, A. G., Van Criekinge, W., and Sidransky, D. (2008) Genome-wide promoter analysis uncovers portions of the cancer methylome, Cancer Res 68, 2661–2670.

    Article  PubMed  CAS  Google Scholar 

  8. Salk, J. J., Fox, E. J., and Loeb, L. A. (2009) Mutational Heterogeneity in Human Cancers: Origin and Consequences, Annu Rev Pathol.

    Google Scholar 

  9. Cree, I. A., Neale, M. H., Myatt, N. E., de Takats, P. G., Hall, P., Grant, J., Kurbacher, C. M., Reinhold, U., Neuber, K., MacKie, R. M., Chana, J., Weaver, P. C., Khoury, G. G., Sartori, C., and Andreotti, P. E. (1999) Heterogeneity of chemosensitivity of metastatic cutaneous melanoma, Anticancer Drugs 10, 437–444.

    Article  PubMed  CAS  Google Scholar 

  10. Mehra, R., Han, B., Tomlins, S. A., Wang, L., Menon, A., Wasco, M. J., Shen, R., Montie, J. E., Chinnaiyan, A. M., and Shah, R. B. (2007) Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases, Cancer Res 67, 7991–7995.

    Article  PubMed  CAS  Google Scholar 

  11. Rosen, J. M., and Jordan, C. T. (2009) The increasing complexity of the cancer stem cell paradigm, Science 324, 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Soler, R. (2009) Individualized therapy in non-small-cell lung cancer: future versus current clinical practice, Oncogene 28 Suppl 1, S38–45.

    Google Scholar 

  13. Heinemann, V., Stintzing, S., Kirchner, T., Boeck, S., and Jung, A. (2009) Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR, Cancer Treat Rev 35, 262–271.

    Article  PubMed  CAS  Google Scholar 

  14. Knudson, A. G., Jr. (1978) Retinoblastoma: a prototypic hereditary neoplasm, Semin Oncol 5, 57–60.

    PubMed  Google Scholar 

  15. Hallstrom, T. C., and Nevins, J. R. (2009) Balancing the decision of cell proliferation and cell fate, Cell Cycle 8, 532–535.

    Article  PubMed  CAS  Google Scholar 

  16. Vousden, K. H., and Lane, D. P. (2007) p53 in health and disease, Nat Rev Mol Cell Biol 8, 275–283.

    Article  PubMed  CAS  Google Scholar 

  17. Phelps, R. A., Broadbent, T. J., Stafforini, D. M., and Jones, D. A. (2009) New perspectives on APC control of cell fate and proliferation in colorectal cancer, Cell Cycle 8, 2549–2556.

    Article  PubMed  CAS  Google Scholar 

  18. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer 26, 239–257.

    Article  PubMed  CAS  Google Scholar 

  19. Fulda, S. (2009) Tumor resistance to apoptosis, Int J Cancer 124, 511–515.

    Article  PubMed  CAS  Google Scholar 

  20. Zuckerman, V., Wolyniec, K., Sionov, R. V., Haupt, S., and Haupt, Y. (2009) Tumour suppression by p53: the importance of apoptosis and cellular senescence, J Pathol 219, 3–15.

    PubMed  CAS  Google Scholar 

  21. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp Cell Res 25, 585–621.

    Article  Google Scholar 

  22. De Boeck, G., Forsyth, R. G., Praet, M., and Hogendoorn, P. C. (2009) Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms, J Pathol 217, 327–344.

    Article  PubMed  Google Scholar 

  23. Keller, G., Brassat, U., Braig, M., Heim, D., Wege, H., and Brummendorf, T. H. (2009) Telomeres and telomerase in chronic myeloid leukaemia: impact for pathogenesis, disease progression and targeted therapy, Hematol Oncol 27, 123–129.

    Article  PubMed  CAS  Google Scholar 

  24. Ha, L., Merlino, G., and Sviderskaya, E. V. (2008) Melanomagenesis: overcoming the barrier of melanocyte senescence, Cell Cycle 7, 1944–1948.

    Article  PubMed  CAS  Google Scholar 

  25. Jain, R. K., Duda, D. G., Willett, C. G., Sahani, D. V., Zhu, A. X., Loeffler, J. S., Batchelor, T. T., and Sorensen, A. G. (2009) Biomarkers of response and resistance to antiangiogenic therapy, Nat Rev Clin Oncol 6, 327–338.

    Article  PubMed  CAS  Google Scholar 

  26. Ramjaun, A. R., and Hodivala-Dilke, K. (2009) The role of cell adhesion pathways in angiogenesis, Int J Biochem Cell Biol 41, 521–530.

    Article  PubMed  CAS  Google Scholar 

  27. Folberg, R., Hendrix, M. J., and Maniotis, A. J. (2000) Vasculogenic mimicry and tumor angiogenesis, Am J Pathol 156, 361–381.

    Article  PubMed  CAS  Google Scholar 

  28. Polak, M. E., Borthwick, N. J., Jager, M. J., and Cree, I. A. (2009) Melanoma vaccines-the problems of local immunosuppression, Hum Immunol.

    Google Scholar 

  29. Polak, M. E., Borthwick, N. J., Gabriel, F. G., Johnson, P., Higgins, B., Hurren, J., McCormick, D., Jager, M. J., and Cree, I. A. (2007) Mechanisms of local immunosuppression in cutaneous melanoma, Br J Cancer 96, 1879–1887.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Cree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cree, I.A. (2011). Cancer Biology. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics