Dtsch Med Wochenschr 2015; 140(08): 578-582
DOI: 10.1055/s-0041-101491
Dossier
Schilddrüsenknoten
© Georg Thieme Verlag KG Stuttgart · New York

Molekularpathogenese von Schilddrüsentumoren

Molecular pathogenesis of thyroid tumors
Vera Tiedje
1   Klinik für Endokrinologie und Stoffwechselerkrankungen, Universitätsklinikum Essen
,
Denise Zwanziger
1   Klinik für Endokrinologie und Stoffwechselerkrankungen, Universitätsklinikum Essen
,
Saskia Ting
2   Institut für Pathologie, Universitätsklinikum Essen
,
Kurt Werner Schmid
2   Institut für Pathologie, Universitätsklinikum Essen
,
Dagmar Führer
1   Klinik für Endokrinologie und Stoffwechselerkrankungen, Universitätsklinikum Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
07 April 2015 (online)

Zusammenfassung

Die Konzepte zur Molekularpathogenese von Schilddrüsentumoren haben sich in den letzten Jahren kontinuierlich weiterentwickelt. Als entscheidender Faktor wurde in Schilddrüsenkarzinomen die konstitutive Aktivierung intrazellulärer Tyrosinkinasen identifiziert. In Follikelzell-basierten Karzinomen scheint die Aktivierung von MAPK- und PI3K-Signalkaskaden über somatische Mutationen und Gen-Rearrangements eine entscheidende Rolle zu spielen. In niedrig differenzierten und anaplastischen Karzinomen wird oftmals eine Akkumulation genetischer Veränderungen der Follikelzell-basierten Tumoren und das Auftreten neuer genetischer Mutationen beobachtet. Das C-Zell-basierte medulläre Karzinom entsteht durch eine Aktivierung der RET-Kinase über Keimbahnmutationen im RET-Proto-Onkogen oder somatische RET- und RAS-Mutationen. Die Erkenntnisse zur molekularen Pathogenese von Schilddrüsentumoren haben die Entwicklung neuer zielgerichteter Therapien ermöglichst. Die Identifikation molekularer Marker ist für eine Vorhersage hinsichtlich der Wirkung zielgerichteter Therapien wünschenswert.

Abstract

The molecular pathogenesis of thyroid tumors has been an evolving field in the past years. The constitutive activation of intracellular tyrosine kinases has been identified as a hallmark of thyroid cancer. The activation of MAPK and PI3K pathways through somatic gene mutations or gene rearrangements seem to play a pivotal role in the pathogenesis of follicular-cell-derived tumors. In poorly differentiated tumors and anaplastic tumors often an accumulation of genetic alterations from differentiated thyroid cancer but also novel gene mutations can be observed. The C-cell-derived medullary thyroid cancer evolves through the constitutive activation of the RET kinase, either through germline RET mutations or somatic RET and RAS mutations. The better knowledge of the molecular pathogenesis allowed the development of targeted therapies in thyroid cancer patients. The identification of molecular response markers to tyrosine kinase inhibitor therapy is desirable.

 
  • Literatur

  • 1 Volzke H, Ludemann J, Robinson DM et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid 2003; 13: 803-810
  • 2 Robert Koch-Institut und Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V.. Krebs in Deutschland 2009 / 2010. 2013. Im Intenet: http://www.gekid.de/Doc/krebs_in_deutschland_2009_2010.pdf Stand: 18.03.2015
  • 3 Ting S, Bockisch A, Schmid KW. Feinnadelbiopsie (FNB) der Schilddrüse. Nuklearmediziner 2012; 35: 1-8
  • 4 Schmid KW. Molecular pathology of thyroid tumors. Pathologe 2010; 31 (Suppl. 02) 229-233
  • 5 Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol 2002; 16: 903-911
  • 6 Krohn K, Fuhrer D, Bayer Y et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 2005; 26: 504-524
  • 7 Krohn K, Maier J, Paschke R. Mechanisms of disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat Clin Pract Endocrinol Metab 2007; 3: 713-720
  • 8 Kimura ET, Nikiforova MN, Zhu Z et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET / PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63: 1454-1457
  • 9 Soares P, Trovisco V, Rocha AS et al. BRAF mutations and RET / PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003; 22: 4578-4580
  • 10 Greco A, Pierotti MA, Bongarzone I et al. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 1992; 7: 237-242
  • 11 Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159: 676-690
  • 12 Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005; 65: 4238-4245
  • 13 Liu D, Liu Z, Condouris S, Xing M. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 2007; 92: 2264-2271
  • 14 Lim JY, Hong SW, Lee YS et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid 2013; 23: 1423-1430
  • 15 Xing M, Alzahrani AS, Carson KA et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013; 309: 1493-1501
  • 16 Di Cristofaro J, Marcy M, Vasko V et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol 2006; 37: 824-830
  • 17 Zou M, Baitei EY, Alzahrani AS et al. Concomitant RAS, RET/ PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid 2014; 24: 1256-1266
  • 18 Liu X, Bishop J, Shan Y et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 2013; 20: 603-610
  • 19 Xing M, Liu R, Liu X et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014; 32: 2718-2726
  • 20 Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist 2013; 18: 926-932
  • 21 Liu RT, Hou CY, You HL et al. Selective occurrence of ras mutations in benign and malignant thyroid follicular neoplasms in Taiwan. Thyroid 2004; 14: 616-621
  • 22 Wohlk N, Schweizer H, Erlic Z et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocriol Metab 2010; 24: 371-387
  • 23 Gregory Powell J, Wang X, Allard BL et al. The PAX8 / PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene 2004; 23: 3634-3641
  • 24 Giordano TJ, Au AY, Kuick R et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clinical Cancer Res 2006; 12: 1983-1993
  • 25 Nikiforova MN, Biddinger PW, Caudill CM et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. The Am J Surg Pathol 2002; 26: 1016-1023
  • 26 Ting S, Schmid ST, Synoracki S, Schmid KW. Die C-Zellen der Schilddrüse und ihre Pathologie. Teil 1: Normale C-Zellen – Hyperplasie der C-Zellen-Präkanzerose des familiären medullären Karzinoms. Pathologe 2015; (im Druck)
  • 27 Ricarte-Filho JC, Ryder M, Chitale DA et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009; 69: 4885-4893
  • 28 Wu G, Mambo E, Guo Z et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab 2005; 90: 4688-4693
  • 29 Liaw D, Marsh DJ, Li J et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16: 64-67
  • 30 Cassinelli G, Favini E, Degl’Innocenti D et al. RET / PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and beta-catenin nuclear translocation. Neoplasia 2009; 11: 10-21
  • 31 Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 2011; 71: 4403-4411
  • 32 Shi X, Liu R, Qu S et al. Association of TERT Promoter Mutation 1,295,228 C > T with BRAF V600E Mutation, Older Patient Age, and Distant Metastasis in Anaplastic Thyroid Cancer. J Clin Endocrinol Metab 2015; jc20143606 [Epub ahead of print]
  • 33 Frank-Raue K, Raue F. Multiple endocrine neoplasia type 2 (MEN 2). Eur J Cancer 2009; 45 (Suppl. 01) 267-273
  • 34 Agrawal N, Jiao Y, Sausen M et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98: E364-369
  • 35 American Thyroid Association Guidelines Task Force. Kloos RT, Eng C et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19: 565-612
  • 36 Schilling T, Burck J, Sinn HP et al. Prognostic value of codon 918 (ATG-->ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int J Cancer 2001; 95: 62-66
  • 37 Tiedje V, Schmid KW, Weber F et al. Differentiated thyroid cancer. Internist 2015; 56: 153-168
  • 38 Zhang Z, Liu D, Murugan AK et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer 2014; 21: 161-173
  • 39 Brose MS, Nutting CM, Jarzab B et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319-328
  • 40 Schlumberger M, Tahara M, Wirth LJ et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621-630
  • 41 Chakravarty D, Santos E, Ryder M et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011; 121: 4700-4711
  • 42 Ho AL, Grewal RK, Leboeuf R et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368: 623-632
  • 43 Wells Jr SA, Robinson BG, Gagel RF et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134-141
  • 44 Elisei R, Schlumberger MJ, Muller SP et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013; 31: 3639-3646
  • 45 Sheu SY, Schmid KW. Multiple Endokrine Neoplasie Typ 2. Pathologe 2010; 31: 449-454