Skip to main content

Advertisement

Log in

Lower Incidence of Postoperative Pulmonary Complications Following Robot-Assisted Minimally Invasive Esophagectomy for Esophageal Cancer: Propensity Score-Matched Comparison to Conventional Minimally Invasive Esophagectomy

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Whether robot-assisted minimally invasive surgery (RAMIE) is more beneficial than conventional minimally invasive surgery (MIE) remains unclear.

Methods

In total, 165 consecutive patients with esophageal carcinoma who underwent esophagectomy between January 2015 and April 2020 were retrospectively assessed. A 1:1 propensity score matching analysis was performed to compare the short-term outcomes between RAMIE and conventional MIE.

Results

After matching, 45 patients were included in the RAMIE and conventional MIE groups. RAMIE had a significantly longer total operative time (708 vs. 612 min, P < 0.001) and thoracic operative time (348 vs. 285 min, P < 0.001) than conventional MIE. However, there were no significant differences in terms of oncological outcomes, such as R0 resection rate and number of resected lymph nodes. The overall postoperative morbidity (Clavien–Dindo [C–D] grade II or higher) rate of RAMIE and conventional MIE were 51% and 73% (P = 0.03), respectively, and the severe postoperative morbidity (C–D grade III or higher) rates were 11% and 29% (P = 0.04), respectively. The incidence rate of recurrent laryngeal nerve palsy was halved in RAMIE (7%) compared with conventional MIE (20%) (P = 0.06). Finally, the pulmonary complication rate (18%) was significantly lower in patients who underwent RAMIE than in those who underwent conventional MIE (44%) (P = 0.006).

Conclusions

RAMIE was safe and feasible, even during the early period of its application at a specialized center. Moreover, it may be a promising alternative to conventional MIE, with better short-term outcomes, including significantly lower incidence of pulmonary complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Kitagawa Y, Uno T, Oyama T, et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: part 2. Esophagus. 2019;16(1):25–43.

    Article  PubMed  Google Scholar 

  3. Cuschieri A, Shimi S, Banting S. Endoscopic oesophagectomy through a right thoracoscopic approach. J R Coll Surg Edinb. 1992;37(1):7–11.

    CAS  PubMed  Google Scholar 

  4. Bodner J, Wykypiel H, Wetscher G, Schmid T. First experiences with the da Vinci operating robot in thoracic surgery. Eur J Cardiothorac Surg. 2004;25(5):844–51.

    Article  CAS  PubMed  Google Scholar 

  5. van Hillegersberg R, Boone J, Draaisma WA, Broeders IA, Giezeman MJ, Borel Rinkes IH. First experience with robot-assisted thoracoscopic esophagolymphadenectomy for esophageal cancer. Surg Endosc. 2006;20(9):1435–9.

    Article  PubMed  Google Scholar 

  6. Dapri G, Himpens J, Cadière GB. Robot-assisted thoracoscopic esophagectomy with the patient in the prone position. J Laparoendosc Adv Surg Tech A. 2006;16(3):278–85.

    Article  PubMed  Google Scholar 

  7. Ruurda JP, Draaisma WA, van Hillegersberg R, et al. Robot-assisted endoscopic surgery: a four-year single-center experience. Dig Surg. 2005;22(5):313–20.

    Article  PubMed  Google Scholar 

  8. Espinoza-Mercado F, Imai TA, Borgella JD, et al. Does the approach matter? Comparing survival in robotic, minimally invasive, and open esophagectomies. Ann Thorac Surg. 2019;107(2):378–85.

    Article  PubMed  Google Scholar 

  9. Tsunoda S, Shinohara H, Kanaya S, et al. Mesenteric excision of upper esophagus: a concept for rational anatomical lymphadenectomy of the recurrent laryngeal nodes in thoracoscopic esophagectomy. Surg Endosc. 2020;34(1):133–41.

    Article  PubMed  Google Scholar 

  10. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours, 8th edn. Wiley-Blackwell, Hoboken; 2016.

  11. Japan Esophageal Society. Japanese classification of esophageal cancer, 11th edn: part I. Esophagus. 2017;14(1):1–36.

    Article  Google Scholar 

  12. Tanaka E, Okabe H, Kinjo Y, et al. Advantages of the prone position for minimally invasive esophagectomy in comparison to the left decubitus position: better oxygenation after minimally invasive esophagectomy. Surg Today. 2015;45(7):819–25.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka E, Okabe H, Tsunoda S, et al. Feasibility of thoracoscopic esophagectomy after neoadjuvant chemotherapy. Asian J Endosc Surg. 2012;5(3):111–7.

    Article  CAS  PubMed  Google Scholar 

  14. Okabe H, Tanaka E, Tsunoda S, Obama K, Sakai Y. Intrathoracic esophagogastric anastomosis using a linear stapler following minimally invasive esophagectomy in the prone position. J Gastrointest Surg. 2013;17(2):397–402.

    Article  PubMed  Google Scholar 

  15. Tsunoda S, Obama K, Hisamori S, Hashimoto K, Nishigori T, Sakai Y. Simple technique of azygos arch division and retraction for minimally invasive esophagectomy. Esophagus. 2020. https://doi.org/10.1007/s10388-020-00760-7.

    Article  PubMed  Google Scholar 

  16. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Low DE, Alderson D, Cecconello I, et al. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann Surg. 2015;262(2):286–94.

    Article  PubMed  Google Scholar 

  18. D’Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265–81.

    Article  PubMed  Google Scholar 

  19. Zhang Y, Han Y, Gan Q, et al. Early outcomes of robot-assisted versus thoracoscopic-assisted Ivor Lewis esophagectomy for esophageal cancer: A propensity score-matched study. Ann Surg Oncol. 2019;26(5):1284–91.

    Article  PubMed  Google Scholar 

  20. Yang Y, Zhang X, Li B, et al. Short-and mid-term outcomes of robotic versus thoraco-laparoscopic McKeown esophagectomy for squamous cell esophageal cancer: A propensity score-matched study. Dis Esophagus. 2019;33(6):doz080. https://doi.org/10.1093/dote/doz080.

    Article  Google Scholar 

  21. Park S, Hwang Y, Lee HJ, Park IK, Kim YT, Kang CH. Comparison of robot-assisted esophagectomy and thoracoscopic esophagectomy in esophageal squamous cell carcinoma. J Thorac Dis. 2016;8(10):2853–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Suda K, Ishida Y, Kawamura Y, et al. Robot-assisted thoracoscopic lymphadenectomy along the left recurrent laryngeal nerve for esophageal squamous cell carcinoma in the prone position: technical report and short-term outcomes. World J Surg. 2012;36(7):1608–16.

    Article  PubMed  Google Scholar 

  23. Jin D, Yao L, Yu J, et al. Robotic-assisted minimally invasive esophagectomy versus the conventional minimally invasive one: a meta-analysis and systematic review. Int J Med Robot. 2019;15(3):e1988.

    Article  PubMed  Google Scholar 

  24. Mu L, Yang S. An experimental study on the laryngeal electromyography and visual observations in varying types of surgical injuries to the unilateral recurrent laryngeal nerve in the neck. Laryngoscope. 1991;101(7 Pt 1):699–708.

    CAS  PubMed  Google Scholar 

  25. Lombardi CP, D’Alatri L, Marchese MR, et al. Prospective electromyographic evaluation of functional postthyroidectomy voice and swallowing symptoms. World J Surg. 2012;36(6):1354–60.

    Article  PubMed  Google Scholar 

  26. Louie BE, Farivar AS, Aye RW, Vallières E. Early experience with robotic lung resection results in similar operative outcomes and morbidity when compared with matched video-assisted thoracoscopic surgery cases. Ann Thorac Surg. 2012;93(5):1598–604; discussion 604–5.

  27. Kataoka K, Takeuchi H, Mizusawa J, et al. Prognostic impact of postoperative morbidity after esophagectomy for esophageal cancer: exploratory analysis of JCOG9907. Ann Surg. 2017;265(6):1152–7.

    Article  PubMed  Google Scholar 

  28. Baba Y, Yoshida N, Shigaki H, et al. Prognostic impact of postoperative complications in 502 patients with surgically resected esophageal squamous cell carcinoma: a retrospective single-institution study. Ann Surg. 2016;264(2):305–11.

    Article  PubMed  Google Scholar 

  29. Booka E, Takeuchi H, Nishi T, et al. The impact of postoperative complications on survivals after esophagectomy for esophageal cancer. Medicine (Baltimore). 2015;94(33):e1369.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park SY, Kim DJ, Kang DR, Haam SJ. Learning curve for robotic esophagectomy and dissection of bilateral recurrent laryngeal nerve nodes for esophageal cancer. Dis Esophagus. 2017;30(12):1–9.

    Article  CAS  PubMed  Google Scholar 

  31. Park S, Hyun K, Lee HJ, Park IK, Kim YT, Kang CH. A study of the learning curve for robotic oesophagectomy for oesophageal cancer. Eur J Cardiothorac Surg. 2018;53(4):862–70.

    Article  PubMed  Google Scholar 

  32. Zhang H, Chen L, Wang Z, et al. The learning curve for robotic McKeown esophagectomy in patients with esophageal cancer. Ann Thorac Surg. 2018;105(4):1024–30.

    Article  PubMed  Google Scholar 

  33. van der Sluis PC, Ruurda JP, van der Horst S, Goense L, van Hillegersberg R. Learning curve for robot-assisted minimally invasive thoracoscopic esophagectomy: results from 312 cases. Ann Thorac Surg. 2018;106(1):264–71.

    Article  PubMed  Google Scholar 

  34. Okabe H, Obama K, Tsunoda S, et al. Feasibility of robotic radical gastrectomy using a monopolar device for gastric cancer. Surg Today. 2019;49(10):820–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Sayaka Shimizu from Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University for valuable advice in statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Tsunoda MD, PhD, FACS.

Ethics declarations

Disclosures

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsunoda, S., Obama, K., Hisamori, S. et al. Lower Incidence of Postoperative Pulmonary Complications Following Robot-Assisted Minimally Invasive Esophagectomy for Esophageal Cancer: Propensity Score-Matched Comparison to Conventional Minimally Invasive Esophagectomy. Ann Surg Oncol 28, 639–647 (2021). https://doi.org/10.1245/s10434-020-09081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-09081-6

Navigation