Skip to main content
Log in

Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Immunosuppression attributed mainly to the UVB (290–320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320–400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290–400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Norval, The mechanisms and consequences of ultraviolet-induced immunosuppression, Prog. Biophys. Mol. Biol., 2006, 92, 108–118.

    Article  CAS  PubMed  Google Scholar 

  2. S. E. Ullrich, Mechanisms underlying UV-induced immune suppression, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2005, 571, 185–205.

    Article  CAS  Google Scholar 

  3. G. M. Halliday and S. Rana, The effects of solar radiation on the immune response in humans, Biophysical and Physiological Effects of Solar Radiation on Human Skin, ed. P. U. Giacomoni, Royal Society of Chemistry, Cambridge, 2007, pp. 127–163.

    Chapter  Google Scholar 

  4. M. M. Welsh, M. R. Karagas, K. M. Applebaum, S. K. Spencer, A. E. Perry, H. H. Nelson, A role for ultraviolet radiation immunosuppression in non-melanoma skin cancer as evidenced by gene-environment interactions, Carcinogenesis, 2008, 29, 1950–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Widyarini, N. Spinks, A. J. Husband, V. E. Reeve, Isoflavonoid compounds from red clover (Trifolium pratense) protect from inflammation and immune suppression by UV radiation, Photochem. Photobiol., 2001, 74, 465–470.

    Article  CAS  PubMed  Google Scholar 

  6. S. Widyarini, D. Domanski, N. Painter, V. E. Reeve, Estrogen signaling protects against immune suppression by UV radiation exposure, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12837–12842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.-L. Cho, M. Allanson, D. Domanski, S. J. Arun, V. E. Reeve, Estrogen receptor-beta signaling protects epidermal cytokine expression and immune function from UVB-induced impairment in mice, Photochem. Photobiol. Sci., 2008, 7, 120–125.

    Article  CAS  PubMed  Google Scholar 

  8. V. E. Reeve, M. Bosnic, C. Boehm-Wilcox, N. Nishimura, R. D. Ley, Ultraviolet A radiation (320–400 nm) protects hairless mice from immunosuppression induced by ultraviolet B radiation (280–320 nm) or cis-urocanic acid, Int. Arch. Allergy Immunol., 1998, 115, 316–322.

    Article  CAS  PubMed  Google Scholar 

  9. J. Shen, S. Bao, V. E. Reeve, Modulation of IL-10, IL-12 and IFN-? in the epidermis of hairless mice by UVA (320–400 nm) and UVB (280–320 nm) radiation, J. Invest. Dermatol., 1999, 113, 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  10. V. E. Reeve, D. Domanski, M. Slater, Radiation sources providing increased UVA-UVB ratios induce UVA dose-dependently increased photoprotection in hairless mice, Photochem. Photobiol., 2006, 82, 406–411.

    Article  CAS  PubMed  Google Scholar 

  11. V. E. Reeve, R. M. Tyrrell, M. Allanson, D. Domanski, L. Blyth, The role of interleukin-6 in UVA protection against UVB-induced immunosuppression, J. Invest. Dermatol., 2008, 129, 1539–1546.

    Article  PubMed  Google Scholar 

  12. K. Wade Foster, S. K. Katiyar, N. Yusuf and C. A. Elmets, Inflammation after solar radiation, in Biophysical and Physiological Effects of Solar Radiation on Human Skin, ed. P. U. Giacomoni, Royal Society of Chemistry, Cambridge, 2007, pp. 25–63.

    Chapter  Google Scholar 

  13. Y. Ibuki, M. Allanson, K. M. Dixon, V. E. Reeve, Radiation sources providing increased UVA/UVB ratios attenuate the apoptotic effects of the UVB waveband UVA-dose-dependently, J. Invest. Dermatol., 2007, 127, 2236–2244.

    Article  CAS  PubMed  Google Scholar 

  14. M. Allanson, D. Domanski, V. E. Reeve, Photoimmunoprotection by UVA (320-400 nm) radiation is determined by UVA dose and is associated with cutaneous cyclic guanosine monophosphate, J. Invest. Dermatol., 2006, 126, 191–197.

    Article  CAS  PubMed  Google Scholar 

  15. V. E. Reeve, Ultraviolet radiation and the contact hypersensitivity reaction in mice, Methods, 2002, 28, 20–24.

    Article  CAS  PubMed  Google Scholar 

  16. N. Cole, P. W. Sou, A. Ngo, K. H. Tsang, J. A. Severino, S. J. Arun, C. C. Duke, V. E. Reeve, Topical ‘Sydney’ propolis protects against UV-radiation-induced inflammation, lipid peroxidation and immune suppression in mouse skin, Int. Arch. Allergy Immunol., 2010, 152, 87–97.

    Article  PubMed  Google Scholar 

  17. K. Kang, A. C. Gilliam, G. Chen, E. Tootell, K. D. Cooper, In human skin, UVB initiated early induction of IL-10 over IL-12 preferentially in the expanding dermal monocytic/macrophagic population, J. Invest. Dermatol., 1998, 110, 31–38.

    Article  Google Scholar 

  18. J. M. Thomas-Ahner, B. C. Wulff, K. L. Tober, D. F. Kusewitt, J. A. Riggenbach, T. M. Oberyszyn, Gender differences in UVB-induced skin carcinogenesis, inflammation and DNA damage, Cancer Res., 2007, 67, 3468–3474.

    Article  CAS  PubMed  Google Scholar 

  19. K. Hiramoto, H. Tanaka, N. Yanagihara, E. F. Sato, M. Inoue, Effect of 17-beta-estradiol on immunosuppression induced by ultraviolet B irradiation, Arch. Dermatol. Res., 2004, 295, 307–311.

    Article  CAS  PubMed  Google Scholar 

  20. S. Widyarini, A. J. Husband, V. E. Reeve, Protective effect of isoflavonoid equol against hairless mouse skin carcinogenesis induced by UV radiation alone or with a chemical carcinogen, Photochem. Photobiol., 2005, 81, 32–37.

    Article  CAS  PubMed  Google Scholar 

  21. J.-L. Cho, M. Allanson, V. E. Reeve, Oestrogen receptor-ß signalling protects against transplanted skin tumour growth in the mouse, Photochem. Photobiol. Sci., 2010, 9, 608–614.

    Article  CAS  PubMed  Google Scholar 

  22. V. E. Reeve, M. Allanson, J.-L. Cho, S. J. Arun, D. Domanski, Interdependence between heme oxygenase-1 induction and estrogen-receptor-ß signaling mediates photoimmune protection by UVA radiation in mice, J. Invest. Dermatol., 2009, 129, 2702–2710.

    Article  CAS  PubMed  Google Scholar 

  23. P. Amblard, Jc. Beani, R. Gautron, Jl. Reymond, B. Doyon, Statistical study of individual variations in sunburn sensitivity in 303 volunteers without photodermatosis, Arch. Dermatol. Res., 1982, 274, 195–206.

    Article  CAS  PubMed  Google Scholar 

  24. R. Kerb, J. Brockmoeller, T. Remm, I. Roots, Deficiency of glutathione S-transferases T1 and M1 as heritable factors of increased cutaneous UV sensitivity, J. Invest. Dermatol., 1997, 108, 229–232.

    Article  CAS  PubMed  Google Scholar 

  25. T. Gambichler, G. Moussa, N. S. Tomi, V. Paech, P. Altmeyer, A. Kreuter, Reference limits for erythema-effective ultraviolet doses, Photochem. Photobiol., 2006, 82, 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  26. G. B. E. Jemec, M. Heidenheim, The influence of sex hormones on UVB induced erythema in man, J. Dermatol. Sci., 1995, 9, 221–224.

    Article  CAS  PubMed  Google Scholar 

  27. W. M. R. Broekmans, A. A. Vink, E. Boelsma, W. A. A. Klopping-Ketelaars, L. B. M. Tijburg, P. van’t Veer, G. Van Poppel, A. F. M. Kardinaal, Determinants of skin sensitivity to solar irradiation, Eur. J. Clin. Nutr., 2003, 57, 1222–1229.

    Article  CAS  PubMed  Google Scholar 

  28. D. L. Damian, C. R. S. Patterson, M. Stapelberg, J. Park, R. St, C. Barnetson, G. M. Halliday, UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide, J. Invest. Dermatol., 2007, 128, 447–454.

    Article  PubMed  Google Scholar 

  29. D. S. Preston, R. S. Stern, Nonmelanoma skin cancer, N. Engl. J. Med., 1992, 327, 1649–1662.

    Article  CAS  PubMed  Google Scholar 

  30. J. A. Foote, R. B. Harris, A. R. Giuliano, D. J. Roe, T. E. Moon, B. Cartmel, D. S. Alberts, Predictors for cutaneous basal- and squamous-cell carcinoma among actinically damaged adults, Int. J. Cancer, 2001, 95, 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R. Molife, P. Lorigan, S. MacNeil, Gender and survival in malignant melanoma, Cancer Treat. Rev., 2001, 27, 201–209.

    Article  CAS  PubMed  Google Scholar 

  32. M. M. Welsh, M. R. Karagas, J. K. Kuriger, A. Houseman, S. K. Spencer, A. E. Perry, H. H. Nelson, Genetic determinants of UV-susceptibility in non-melanoma skin cancer, PLoS One, 2011, 6, e20019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. E. Reeve, R. M. Tyrrell, Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9317–9312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. M. Tyrrell, V. E. Reeve, Potential protection of skin by acute UVA irradiation–From cellular to animal models, Prog. Biophys. Mol. Biol., 2006, 92, 86–91.

    Article  CAS  PubMed  Google Scholar 

  35. E. J. Collinson, S. Wimmer-Kleikamp, S. K. Gerega, Y. H. Yang, C. R. Parrish, I. W. Dawes, R. Stocker, The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes, J. Biol. Chem., 2011, 286, 2205–2214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivienne E. Reeve.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeve, V.E., Allanson, M., Domanski, D. et al. Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation. Photochem Photobiol Sci 11, 173–179 (2012). https://doi.org/10.1039/c1pp05224a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05224a

Navigation