Skip to main content
Log in

Dog attack: the application of canine DNA profiling in forensic casework

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

More than 100,000 dog attacks occur each year in Australia and many go unsolved. Dog attacks are not only a cause of human injury but may also involve injury and death to family pets, prized livestock and wildlife. Canine biological evidence can often be left behind on a victim or at the scene of an attack. Our laboratory provides canine DNA profiling for forensic investigations, utilising an in-house panel of 11 canine-specific autosomal short tandem repeat markers previously validated for use in casework. Case studies will be presented that outline methods for sampling of suspected canine biological evidence, profiling of canine DNA, statistical analysis, case outcomes and challenges for investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Australian Companion Animal Council. Dogs in society position paper—Review of dog bite prevention programs in Australia, 2007.

  2. DeNise S, Johnston E, Halverston J, Marshall K, Rosenfield D, McKenna S, et al. Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim Genet. 2003;35:14–7.

    Article  Google Scholar 

  3. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome. 1996;7:359–62.

    Article  CAS  PubMed  Google Scholar 

  4. Zajc I, Mellersh CS, Sampson J. Variability of canine microsatellites within and between different dog breeds. Mamm Genome. 1997;8(3):182–5.

    Article  CAS  PubMed  Google Scholar 

  5. Morera L, Barba CJ, Garrido JJ, Barbancho M, de Andres DF. Genetic variation detected by microsatellites in five Spanish dog breeds. J Hered. 1999;90(6):654–6.

    Article  CAS  PubMed  Google Scholar 

  6. Irion DN, Schaffer AL, Famula TR, Eggleston ML, Hughes SS, Pedersen NC. Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. J Hered. 2003;94(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  7. Halverston J, Basten C. A PCR Multiplex and Database for Forensic DNA Identification of Dogs. J Forensic Sci. 2005;50(2):352–63.

    Google Scholar 

  8. Blejwas K, Williams C, Shin G, McCullough D, Jaeger M. Salivary DNA evidence convicts male coyotes of killing sheep. J Wildl Manag. 2006;70:1087–93.

    Article  Google Scholar 

  9. Sundqvist A, Ellegren H, Vila C. Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conserv Genet. 2008;9:1275–9.

    Article  CAS  Google Scholar 

  10. Halverston J, Dvorak J, Stevenson T. Microsatellite sequences for canine genotyping. US Patent 05874217, 1995.

  11. Taberlet P, Griffin S, Goosens B, Questiau S, Manceau V, Escaravage N, et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24(16):3189–94.

    Article  CAS  PubMed  Google Scholar 

  12. Tereba A. Tools for analysis of population statistics. Profiles in DNA 1999;2(3).

  13. Lewis PO, Zaykin D. Genetic data analysis: portable version 1.1 for Linux, 1996 (Software available at http://lewis.eeb.uconn.edu/lewishome/software.html).

  14. Balding DJ, Nicholls RA. DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Sci Int. 1994;64:125–40.

    Article  CAS  PubMed  Google Scholar 

  15. Chakraborty R, Srinivasan MR, Daiger SP. Evaluation of standard error and confidence interval of estimated multilocus genotype probabilities, and their implications in DNA forensics. Am J Hum Genet. 1993;52:60–70.

    CAS  PubMed  Google Scholar 

  16. Kanthaswamy S, Tom BK, Mattila A, Johnston E, Dayton M, Kinaga EricksonBJA, et al. Canine population data generated from a multiplex STR kit for use in forensic casework J. Forensic Sci. 2009;54(4):829–40.

    Article  CAS  Google Scholar 

  17. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci. 2004;39:362–72.

    Google Scholar 

  18. Vandenberg N, van Oorschot RAH. The use of polilight in the detection of seminal fluid, saliva and bloodstains and comparison to conventional chemical based screening tests. J Forensic Sci. 2006;51:361–70.

    Article  CAS  PubMed  Google Scholar 

  19. Brauner P, Reshef A, Gorski A. DNA profiling of trace evidence—mitigating evidence in a dog biting case. J Forensic Sci. 2001;46(5):1232–4.

    CAS  PubMed  Google Scholar 

  20. Mitchell BD, Banks PB. Do wild dogs exclude foxes? evidence for competition from dietary and spatial overlaps. Austral Ecol. 2005;30:581–91.

    Article  Google Scholar 

  21. NSW Scientific Committee—final determination. Predation and Hybridisation by Feral Dogs (Canis lupus familiaris)—key threatening process listing, July 2009. www.environment.nsw.gov.au/determinations/feraldogsFD.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, M., Vandenberg, N. Dog attack: the application of canine DNA profiling in forensic casework. Forensic Sci Med Pathol 6, 151–157 (2010). https://doi.org/10.1007/s12024-009-9114-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-009-9114-8

Keywords

Navigation