Skip to main content

Advertisement

Log in

Acute Myeloid Leukemia Stem Cells: Origin, Characteristics, and Clinical Implications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The stem cells of acute myeloid leukemia (AML) are the malignancy initiating cells whose survival ultimately drives growth of these lethal diseases. Here we review leukemia stem cell (LSC) biology, particularly as it relates to the very heterogeneous nature of AML and to its high disease relapse rate. Leukemia ontogeny is presented, and the defining functional and phenotypic features of LSCs are explored. Surface and metabolic phenotypes of these cells are described, particularly those that allow distinction from features of normal hematopoietic stem cells (HSCs). Opportunities for use of this information for improving therapy for this challenging group of diseases is highlighted, and we explore the clinical needs which may be addressed by emerging LSC data. Finally, we discuss current gaps in the scientific understanding of LSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

N/A.

Code Availability

N/A.

References

  1. Estey, E. H. (2018). “Acute myeloid leukemia: 2019 update on risk-stratification and management,” (in eng). American Journal of Hematology, 93(10), 1267–1291. https://doi.org/10.1002/ajh.25214

    Article  PubMed  Google Scholar 

  2. Bonnet, D., & Dick, J. E. (1997). “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” (in eng). Nature Medicine, 3(7), 730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Aguilera, A., & Mendez-Ferrer, S. (2017). The hematopoietic stem-cell niche in health and leukemia. Cellular and Molecular Life Sciences, 74(4), 579–590. https://doi.org/10.1007/s00018-016-2306-y

    Article  CAS  PubMed  Google Scholar 

  4. Batsivari, A., Grey, W., & Bonnet, D. (2021). Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Experimental Hematology, 95, 23–30. https://doi.org/10.1016/j.exphem.2021.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Fialkow, P. J. (1979). Clonal origin of human tumors. Annual Review of Medicine, 30, 135–143. https://doi.org/10.1146/annurev.me.30.020179.001031

    Article  CAS  PubMed  Google Scholar 

  6. R. G. Wiggans, Jacobson, R. J., Fialkow, P. J., Woolley, 3rd P. V. ,  Macdonald, J. S., & Schein, P. S. (1978). Probable clonal origin of acute myeloblastic leukemia following radiation and chemotherapy of colon cancer,. Blood, 52(4), 659–663. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/278630.

  7. Lapidot, T., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.

    Article  CAS  PubMed  Google Scholar 

  8. Kreso, A., & Dick, J. E. (2014). “Evolution of the cancer stem cell model,” (in eng). Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Nowell, P. C., & Hungerford, D. A. (1964). Chromosome changes in human leukemia and a tentative assessment of their significance. Annals of the New York Academy of Sciences, 113, 654–662. https://doi.org/10.1111/j.1749-6632.1964.tb40697.x

    Article  CAS  PubMed  Google Scholar 

  10. Mitelman, F., Nilsson, P. G., Levan, G., & Brandt, L. (1976). Non-random chromosome changes in acute myeloid leukemia. Chromosome banding examination of 30 cases at diagnosis. International Journal of Cancer, 18(1), 31–38. https://doi.org/10.1002/ijc.2910180106

    Article  CAS  PubMed  Google Scholar 

  11. Arber, D. A., et al. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  12. Papaemmanuil, E., Dohner, H., & Campbell, P. J. (2016). Genomic Classification in Acute Myeloid Leukemia. New England Journal of Medicine, 375(9), 900–901. https://doi.org/10.1056/NEJMc1608739

    Article  PubMed  Google Scholar 

  13. Dohner, H., et al. (2017). Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 129(4), 424–447. https://doi.org/10.1182/blood-2016-08-733196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stubbs, M. C., et al. (2008). MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: Development of a model for rapid therapeutic assessment. Leukemia, 22(1), 66–77. https://doi.org/10.1038/sj.leu.2404951

    Article  CAS  PubMed  Google Scholar 

  15. Uckelmann, H. J., et al. (2020). Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science, 367(6477), 586–590. https://doi.org/10.1126/science.aax5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, C., et al. (2016). Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia. Leukemia, 30(6), 1436–1440. https://doi.org/10.1038/leu.2015.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Cancer Genome Atlas Research et al. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England Journal of Medicine, 368(22), 2059–2074. https://doi.org/10.1056/NEJMoa1301689.

  18. Wang, J. C., & Dick, J. E. (2005). “Cancer stem cells: Lessons from leukemia,” (in eng). Trends in Cell Biology, 15(9), 494–501. https://doi.org/10.1016/j.tcb.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Majeti, R., Park, C. Y., & Weissman, I. L. (2007). “Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood,” (in eng). Cell Stem Cell, 1(6), 635–645. https://doi.org/10.1016/j.stem.2007.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M., & Sutherland, H. J. (1997). “Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo,” (in eng). Blood, 89(9), 3104–3112.

    Article  CAS  PubMed  Google Scholar 

  21. Miyamoto, T., Weissman, I. L., & Akashi, K. (2000). “AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation,” (in eng). Proc Natl Acad Sci U S A, 97(13), 7521–7526. https://doi.org/10.1073/pnas.97.13.7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shlush, L. I., et al. (2014). “Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia,” (in eng). Nature, 506(7488), 328–333. https://doi.org/10.1038/nature13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Busque, L., et al. (2012). Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nature Genetics, 44(11), 1179–1181. https://doi.org/10.1038/ng.2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Genovese, G., et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine, 371(26), 2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  Google Scholar 

  25. Genovese, G., Jaiswal, S., Ebert, B. L., & McCarroll, S. A. (2015). Clonal hematopoiesis and blood-cancer risk. New England Journal of Medicine, 372(11), 1071–1072. https://doi.org/10.1056/NEJMc1500684

    Article  PubMed  Google Scholar 

  26. Kwok, B., et al. (2015). MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood, 126(21), 2355–2361. https://doi.org/10.1182/blood-2015-08-667063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buscarlet, M., et al. (2017). DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood, 130(6), 753–762. https://doi.org/10.1182/blood-2017-04-777029

    Article  CAS  PubMed  Google Scholar 

  28. Jaiswal, S., et al. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine, 371(26), 2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  Google Scholar 

  29. Loberg, M. A., et al. (2019). Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia, 33(7), 1635–1649. https://doi.org/10.1038/s41375-018-0368-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, J., et al. (2019). Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nature Medicine, 25(1), 103–110. https://doi.org/10.1038/s41591-018-0267-4

    Article  CAS  PubMed  Google Scholar 

  31. Cleary, A. S., Leonard, T. L., Gestl, S. A., & Gunther, E. J. (2014). Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature, 508(7494), 113–117. https://doi.org/10.1038/nature13187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kleppe, M., & Levine, R. L. (2014). Tumor heterogeneity confounds and illuminates: Assessing the implications. Nature Medicine, 20(4), 342–344. https://doi.org/10.1038/nm.3522

    Article  CAS  PubMed  Google Scholar 

  33. Miles, L. A., et al. (2020). Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature, 587(7834), 477–482. https://doi.org/10.1038/s41586-020-2864-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lapidot, T., et al. (1994). “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” (in eng). Nature, 367(6464), 645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  35. Ishikawa, F., et al. (2005). “Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice,” (in eng). Blood, 106(5), 1565–1573. https://doi.org/10.1182/blood-2005-02-0516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barve, A., Casson, L., Krem, M., Wunderlich, M., Mulloy, J. C., & Beverly, L. J. (2018). Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Experimental Hematology, 67, 18–31. https://doi.org/10.1016/j.exphem.2018.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taussig, D. C., et al. (2008). “Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells,” (in eng). Blood, 112(3), 568–575. https://doi.org/10.1182/blood-2007-10-118331

    Article  CAS  PubMed  Google Scholar 

  38. Hope, K. J., Jin, L., & Dick, J. E. (2004). “Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity,” (in eng). Nature Immunology, 5(7), 738–743. https://doi.org/10.1038/ni1080

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, D., & Majeti, R. (2017). “Biology and relevance of human acute myeloid leukemia stem cells,” (in eng). Blood, 129(12), 1577–1585. https://doi.org/10.1182/blood-2016-10-696054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishikawa, F., et al. (2007). “Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region,” (in eng). Nature Biotechnology, 25(11), 1315–1321. https://doi.org/10.1038/nbt1350

    Article  CAS  PubMed  Google Scholar 

  41. Saito, Y., et al. (2010). “Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML,” (in eng). Nature Biotechnology, 28(3), 275–280. https://doi.org/10.1038/nbt.1607

    Article  CAS  PubMed  Google Scholar 

  42. Boyd, A. L., et al. (2018). “Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of Human AML Recurrence,” (in eng). Cancer Cell, 34(3), 483-498.e5. https://doi.org/10.1016/j.ccell.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  43. Farge, T., et al. (2017). “Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism,” (in eng). Cancer Discovery, 7(7), 716–735. https://doi.org/10.1158/2159-8290.cd-16-0441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Griessinger, E., et al. (2014). “A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: A new tool to decipher their chemoresistance and self-renewal mechanisms,” (in eng). Stem Cells Translational Medicine, 3(4), 520–529. https://doi.org/10.5966/sctm.2013-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwasaki, M., Liedtke, M., Gentles, A. J., & Cleary, M. L. (2015). “CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia,” (in eng). Cell Stem Cell, 17(4), 412–421. https://doi.org/10.1016/j.stem.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gebru, M. T., et al. (2020). Glucocorticoids enhance the antileukemic activity of FLT3 inhibitors in FLT3-mutant acute myeloid leukemia. Blood, 136(9), 1067–1079. https://doi.org/10.1182/blood.2019003124

    Article  PubMed  PubMed Central  Google Scholar 

  47. Touzet, L., et al. (2019). “CD9 in acute myeloid leukemia: Prognostic role and usefulness to target leukemic stem cells,” (in eng). Cancer Medicine, 8(3), 1279–1288. https://doi.org/10.1002/cam4.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saito, Y., et al. (2010). “Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells," (in eng). Sci Transl Med, 2(17), 17ra9. https://doi.org/10.1126/scitranslmed.3000349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Riether, C., et al. (2017). “CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia,” (in eng). Journal of Experimental Medicine, 214(2), 359–380. https://doi.org/10.1084/jem.20152008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taussig, D. C., et al. (2005). “Hematopoietic stem cells express multiple myeloid markers: Implications for the origin and targeted therapy of acute myeloid leukemia,” (in eng). Blood, 106(13), 4086–4092. https://doi.org/10.1182/blood-2005-03-1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). “Targeting of CD44 eradicates human acute myeloid leukemic stem cells,” (in eng). Nature Medicine, 12(10), 1167–1174. https://doi.org/10.1038/nm1483

    Article  CAS  PubMed  Google Scholar 

  52. Kersten, B., et al. (2016). “CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia,” (in eng). British Journal of Haematology, 173(2), 219–235. https://doi.org/10.1111/bjh.13941

    Article  CAS  PubMed  Google Scholar 

  53. Goardon, N., et al. (2011). “Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia,” (in eng). Cancer Cell, 19(1), 138–152. https://doi.org/10.1016/j.ccr.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  54. Majeti, R., et al. (2009). “CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells,” (in eng). Cell, 138(2), 286–299. https://doi.org/10.1016/j.cell.2009.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oehler, V. G., et al. (2010). CD52 expression in leukemic stem/progenitor cells. Blood, 116(21), 2743. https://doi.org/10.1182/blood.V116.21.2743.2743

    Article  Google Scholar 

  56. de Boer, B., et al. (2018). “Prospective isolation and characterization of genetically and functionally distinct AML subclones,” (in eng). Cancer Cell, 34(4), 674-689.e8. https://doi.org/10.1016/j.ccell.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  57. Hosen, N., et al. (2007). “CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia,” (in eng). Proc Natl Acad Sci U S A, 104(26), 11008–11013. https://doi.org/10.1073/pnas.0704271104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chung, S. S. et al. (2017). "CD99 is a therapeutic target on disease stem cells in myeloid malignancies," (in eng). Science Translational Medicine, 9(374). https://doi.org/10.1126/scitranslmed.aaj2025.

  59. Jordan, C. T., et al. (2000). “The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells,” (in eng). Leukemia, 14(10), 1777–1784. https://doi.org/10.1038/sj.leu.2401903

    Article  CAS  PubMed  Google Scholar 

  60. Ho, J. M., et al. (2020). “CD200 expression marks leukemia stem cells in human AML,” (in eng). Blood Advances, 4(21), 5402–5413. https://doi.org/10.1182/bloodadvances.2020001802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jan, M., et al. (2011). “Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker,” (in eng). Proc Natl Acad Sci U S A, 108(12), 5009–5014. https://doi.org/10.1073/pnas.1100551108

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kikushige, Y., et al. (2010). “TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells,” (in eng). Cell Stem Cell, 7(6), 708–717. https://doi.org/10.1016/j.stem.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  63. van Rhenen, A., et al. (2007). “The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells,” (in eng). Blood, 110(7), 2659–2666. https://doi.org/10.1182/blood-2007-03-083048

    Article  CAS  PubMed  Google Scholar 

  64. Pabst, C., et al. (2016). “GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo,” (in eng). Blood, 127(16), 2018–2027. https://doi.org/10.1182/blood-2015-11-683649

    Article  CAS  PubMed  Google Scholar 

  65. Barreyro, L., et al. (2012). “Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS,” (in eng). Blood, 120(6), 1290–1298. https://doi.org/10.1182/blood-2012-01-404699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ågerstam, H., et al. (2015). “Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia,” (in eng). Proc Natl Acad Sci U S A, 112(34), 10786–10791. https://doi.org/10.1073/pnas.1422749112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Askmyr, M., et al. (2013). “Selective killing of candidate AML stem cells by antibody targeting of IL1RAP,” (in eng). Blood, 121(18), 3709–3713. https://doi.org/10.1182/blood-2012-09-458935

    Article  CAS  PubMed  Google Scholar 

  68. Eppert, K., et al. (2011). “Stem cell gene expression programs influence clinical outcome in human leukemia,” (in eng). Nature Medicine, 17(9), 1086–1093. https://doi.org/10.1038/nm.2415

    Article  CAS  PubMed  Google Scholar 

  69. Hogan, C. J., Shpall, E. J., & Keller, G. (2002). “Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice,” (in eng). Proc Natl Acad Sci U S A, 99(1), 413–418. https://doi.org/10.1073/pnas.012336799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bakker, A. B., et al. (2004). “C-type lectin-like molecule-1: A novel myeloid cell surface marker associated with acute myeloid leukemia,” (in eng). Cancer Research, 64(22), 8443–8450. https://doi.org/10.1158/0008-5472.can-04-1659

    Article  CAS  PubMed  Google Scholar 

  71. Zeijlemaker, W., et al. (2019). CD34(+)CD38(-) leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia, 33(5), 1102–1112. https://doi.org/10.1038/s41375-018-0326-3

    Article  CAS  PubMed  Google Scholar 

  72. Falini, B., et al. (2005). Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.[see comment][erratum appears in N Engl J Med. 2005 Feb 17;352(7):740]. New England Journal of Medicine, 352(3), 254–266.

    Article  CAS  PubMed  Google Scholar 

  73. Warburg, O. (1956). “On the origin of cancer cells,” (in eng). Science, 123(3191), 309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  74. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elstrom, R. L., et al. (2004). “Akt stimulates aerobic glycolysis in cancer cells,” (in eng). Cancer Research, 64(11), 3892–3899. https://doi.org/10.1158/0008-5472.can-03-2904

    Article  CAS  PubMed  Google Scholar 

  76. Gottschalk, S., Anderson, N., Hainz, C., Eckhardt, S. G., & Serkova, N. J. (2004). “Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells,” (in eng). Clinical Cancer Research, 10(19), 6661–6668. https://doi.org/10.1158/1078-0432.ccr-04-0039

    Article  CAS  PubMed  Google Scholar 

  77. Ye, H., et al. (2018). “Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells,” (in eng). Cancer Cell, 34(4), 659-673.e6. https://doi.org/10.1016/j.ccell.2018.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kobayashi, C. I., & Suda, T. (2012). “Regulation of reactive oxygen species in stem cells and cancer stem cells,” (in eng). Journal of Cellular Physiology, 227(2), 421–430. https://doi.org/10.1002/jcp.22764

    Article  CAS  PubMed  Google Scholar 

  79. Janiszewska, M., et al. (2012). “Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells,” (in eng). Genes & Development, 26(17), 1926–1944. https://doi.org/10.1101/gad.188292.112

    Article  CAS  Google Scholar 

  80. Lagadinou, E. D., et al. (2013). “BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells,” (in eng). Cell Stem Cell, 12(3), 329–341. https://doi.org/10.1016/j.stem.2012.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Diehn, M., et al. (2009). “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” (in eng). Nature, 458(7239), 780–783. https://doi.org/10.1038/nature07733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, Z. X., & Pervaiz, S. (2007). “Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells,” (in eng). Cell Death and Differentiation, 14(9), 1617–1627. https://doi.org/10.1038/sj.cdd.4402165

    Article  CAS  PubMed  Google Scholar 

  83. DiNardo, C. D., et al. (2018). Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. The lancet Oncology, 19(2), 216–228. https://doi.org/10.1016/S1470-2045(18)30010-X

    Article  CAS  PubMed  Google Scholar 

  84. Pollyea, D. A., et al. (2018). Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nature Medicine, 24(12), 1859–1866. https://doi.org/10.1038/s41591-018-0233-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. DiNardo, C. D., et al. (2018). “Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies,” (in eng). American Journal of Hematology, 93(3), 401–407. https://doi.org/10.1002/ajh.25000

    Article  CAS  PubMed  Google Scholar 

  86. Jones, C. L., et al. (2018). “Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells,” (in eng). Cancer Cell, 34(5), 724-740.e4. https://doi.org/10.1016/j.ccell.2018.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones, C. L., et al. (2020). “Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells,” (in eng). Cell Stem Cell, 27(5), 748-764.e4. https://doi.org/10.1016/j.stem.2020.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hilton, J.  (1984). Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Research, 44(11),  5156–60. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/6488175.

  89. Tsukamoto, N., Chen, J., & Yoshida, A. (1998). Enhanced expressions of glucose-6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase and elevation of reduced glutathione level in cyclophosphamide-resistant human leukemia cells. Blood Cells, Molecules, & Diseases, 24(2), 231–238. https://doi.org/10.1006/bcmd.1998.0188

    Article  CAS  Google Scholar 

  90. Corti, S., et al. (2006). Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells, 24(4), 975–985. https://doi.org/10.1634/stemcells.2005-0217

    Article  CAS  PubMed  Google Scholar 

  91. Ma, S., et al. (2008). Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research, 6(7), 1146–1153. https://doi.org/10.1158/1541-7786.MCR-08-0035

    Article  CAS  PubMed  Google Scholar 

  92. Morimoto, K., et al. (2009). Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Science, 100(6), 1062–1068. https://doi.org/10.1111/j.1349-7006.2009.01151.x

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338. https://doi.org/10.1158/1541-7786.MCR-08-0393

    Article  CAS  PubMed  Google Scholar 

  94. Cheung, A. M., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21(7), 1423–1430. https://doi.org/10.1038/sj.leu.2404721

    Article  CAS  PubMed  Google Scholar 

  95. Schuurhuis, G. J., et al. (2013). Normal hematopoietic stem cells within the AML bone marrow have a distinct and higher ALDH activity level than co-existing leukemic stem cells. PLoS ONE, 8(11), e78897. https://doi.org/10.1371/journal.pone.0078897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoang, V. T., et al. (2015). The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients. International Journal of Cancer, 137(3), 525–536. https://doi.org/10.1002/ijc.29410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smith, C., Gasparetto, M., Humphries, K., Pollyea, D. A., Vasiliou, V., & Jordan, C. T. (2014). “Aldehyde dehydrogenases in acute myeloid leukemia,” (in eng). Annals of the New York Academy of Sciences, 1310, 58–68. https://doi.org/10.1111/nyas.12414

    Article  CAS  PubMed  Google Scholar 

  98. Venton, G., et al. (2016). “Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors,” (in eng). Blood Cancer J, 6(9), e469. https://doi.org/10.1038/bcj.2016.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Annageldiyev, C., et al. (2019). The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia. Haematologica, 13, 485. https://doi.org/10.3324/haematol.2018.212886

    Article  CAS  Google Scholar 

  100. Broccoli, D., Young, J. W., & De Lange, T. (1995). Telomerase activity in normal and malignant hematopoietic cells. Proceedings of the National academy of Sciences of the United States of America, 92, 9082–9086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Watts, J. M., et al. (2016). Telomere length and associations with somatic mutations and clinical outcomes in acute myeloid leukemia. Leukemia Research, 49, 62–65. https://doi.org/10.1016/j.leukres.2016.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Williams, J., et al. (2017). Telomere length is an independent prognostic marker in MDS but not in de novo AML. British Journal of Haematology, 178(2), 240–249. https://doi.org/10.1111/bjh.14666

    Article  CAS  PubMed  Google Scholar 

  103. Lansdorp, P. M. (2017). Maintenance of telomere length in AML. Blood Advances, 1(25), 2467–2472. https://doi.org/10.1182/bloodadvances.2017012112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ly, M., et al. (2019). Diminished AHR signaling drives human acute myeloid leukemia stem cell maintenance. Cancer Research, 79(22), 5799–5811. https://doi.org/10.1158/0008-5472.CAN-19-0274

    Article  CAS  PubMed  Google Scholar 

  105. Pabst, C., et al. (2014). Identification of small molecules that support human leukemia stem cell activity ex vivo. Nature Methods, 11(4), 436–442. https://doi.org/10.1038/nmeth.2847

    Article  CAS  PubMed  Google Scholar 

  106. Walter, R. B., et al. (2014). Heterogeneity of clonal expansion and maturation-linked mutation acquisition in hematopoietic progenitors in human acute myeloid leukemia. Leukemia, 28(10), 1969–1977. https://doi.org/10.1038/leu.2014.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ng, S. W., et al. (2016). A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 540(7633), 433–437. https://doi.org/10.1038/nature20598

    Article  CAS  PubMed  Google Scholar 

  108. Pinho, S., & Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nature Reviews Molecular Cell Biology, 20(5), 303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Villatoro, A., Konieczny, J., Cuminetti, V., & Arranz, L. (2020). Leukemia stem cell release from the stem cell niche to treat acute myeloid leukemia. Front Cell Dev Biol, 8, 607. https://doi.org/10.3389/fcell.2020.00607

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nervi, B., et al. (2009). Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood, 113(24), 6206–6214. https://doi.org/10.1182/blood-2008-06-162123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sievers, E. L., et al. (2001). Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. Journal of Clinical Oncology, 19(13), 3244–3254.

    Article  CAS  PubMed  Google Scholar 

  112. Hauswirth, A. W., et al. (2007). Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells. European Journal of Clinical Investigation, 37(1), 73–82.

    Article  CAS  PubMed  Google Scholar 

  113. Wadleigh, M., et al. (2003). Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation.[see comment]. Blood, 102(5), 1578–1582.

    Article  CAS  PubMed  Google Scholar 

  114. Petersdorf, S. H., et al. (2013). “A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia,” (in eng). Blood, 121(24), 4854–4860. https://doi.org/10.1182/blood-2013-01-466706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, M. Y., et al. (2018). “Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia,” (in eng). Cell, 173(6), 1439-1453.e19. https://doi.org/10.1016/j.cell.2018.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jin, L., et al. (2009). “Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells,” (in eng). Cell Stem Cell, 5(1), 31–42. https://doi.org/10.1016/j.stem.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  117. Kubasch, A. S., et al. (2020). Single agent talacotuzumab demonstrates limited efficacy but considerable toxicity in elderly high-risk MDS or AML patients failing hypomethylating agents. Leukemia, 34(4), 1182–1186.

    Article  PubMed  Google Scholar 

  118. Montesinos, P., et al. (2021). “Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: Results from a multicenter, randomized, phase 2/3 study,” (in eng). Leukemia, 35(1), 62–74. https://doi.org/10.1038/s41375-020-0773-5

    Article  CAS  PubMed  Google Scholar 

  119. Liu, J., et al. (2015). “Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential,” (in eng). PLoS ONE, 10(9), e0137345. https://doi.org/10.1371/journal.pone.0137345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pang, W. W., et al. (2013). “Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes,” (in eng). Proc Natl Acad Sci U S A, 110(8), 3011–3016. https://doi.org/10.1073/pnas.1222861110

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chao, M. P., et al. (2019). “Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies,” (in eng). Frontiers in Oncology, 9, 1380. https://doi.org/10.3389/fonc.2019.01380

    Article  PubMed  Google Scholar 

  122. Aslostovar, L., et al. (2018). “A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia,” (in eng). Blood Advances, 2(15), 1935–1945. https://doi.org/10.1182/bloodadvances.2018015677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yanagisawa, B., et al. (2020). Expression of putative leukemia stem cell targets in genetically-defined acute myeloid leukemia subtypes. Leukemia Research, 99, 106477. https://doi.org/10.1016/j.leukres.2020.106477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amatangelo, M. D., et al. (2017). Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood, 130(6), 732–741. https://doi.org/10.1182/blood-2017-04-779447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Popovici-Muller, J., et al. (2018). Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Medicinal Chemistry Letters, 9(4), 300–305. https://doi.org/10.1021/acsmedchemlett.7b00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the NIH award 2P01CA171983-06A1 and funds from the Kenneth Noel Memorial Foundation – to Dr. Claxton.

Author information

Authors and Affiliations

Authors

Contributions

NL and DC researched the literature and wrote the manuscript. UG prepared figures and revised the manuscript. AS revised and refined the manuscript.

Corresponding author

Correspondence to David F. Claxton.

Ethics declarations

Ethics Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

The authors give their consent.

Conflict of Interest

None Relevant.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, N.A., Golla, U., Sharma, A. et al. Acute Myeloid Leukemia Stem Cells: Origin, Characteristics, and Clinical Implications. Stem Cell Rev and Rep 18, 1211–1226 (2022). https://doi.org/10.1007/s12015-021-10308-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10308-6

Keywords

Navigation