Skip to main content
Log in

Pulmonalarterienkatheter in der Anästhesiologie und operativen Intensivmedizin

Eine Bestandsaufnahme

Pulmonary artery catheters in anesthesiology and surgical intensive care medicine

Status quo

  • Leitthema
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

Angestoßen durch die Entwicklung alternativer Verfahren zur Bestimmung des Herzzeitvolumens, der zunehmenden Verbreitung der Echokardiographie und älterer, den Nutzen des Pulmonalarterienkatheters (PAK) beim Intensivpatienten infrage stellender Observationsstudien wird dieses Monitoringverfahren in den letzten Jahren zunehmend kritisch gesehen. Dies erscheint sowohl unter objektiver Betrachtung der Datenlage als auch unter Berücksichtigung der Tatsache, dass der PAK unverändert das umfassendste System zur kontinuierlichen Überwachung der kardialen Funktion und – bei sinnvoller Anwendung im Kontext einer zielgerichteten hämodynamischen Optimierung – eines der am besten nach Evidenzkriterien validierten anästhesiologisch-intensivmedizinischen Instrumente darstellt, nicht nachvollziehbar. Ziel der vorliegenden Arbeit ist es, einen Überblick über die methodischen Grundlagen des hämodynamischen Monitorings mittels PAK zu geben, die verfügbare Literatur zum Nutzen dieses Systems darzustellen, kritisch zu würdigen und Perspektiven für den Einsatz dieses Monitorings darzustellen.

Abstract

Following the introduction of alternative systems for the monitoring of cardiac output, the increasing use of echocardiography, and observational data questioning the usefulness of right heart catherization in the critically ill, there is ongoing controversy about the pulmonary artery catheter (PAC). This is astonishing since the PAC is by far the most comprehensive hemodynamic monitoring system and – if used in the context of perioperative goal-directed hemodynamic optimization – among the few instruments in intensive care medicine validated by evidence-based criteria. The present article gives an overview about methodological aspects of hemodynamic monitoring with the PAC, the current literature about the usefulness of this monitoring technique in various clinical fields, and perspectives for the use of the PAC in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Heringlake M, Heinze H, Misfeld M et al (2008) Goal-directed hemodynamic optimization in high-risk cardiac surgery patients: a tale from the past or a future obligation? Minerva Anestesiol 74:251–258

    CAS  PubMed  Google Scholar 

  2. Swan HJC, Ganz W, Forrester J et al (1070) Catheterazion of the heart in man with the use of a flow directed ballon catheter. N Engl J Med 283:447–451

    Google Scholar 

  3. Shoemaker WC, Beez M (2010) Pathophysiology, monitoring, and therapy of shock with organ failure. Appl Cardiopulm Pathophysiol 14:30–38

    Google Scholar 

  4. Zwissler B (2002) Inhalative Vasodilatatoren. Anaesthesist 51:603–624

    Article  CAS  PubMed  Google Scholar 

  5. Kohsaka S, Menon V, Lowe AM et al (2005) Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med 165:1643–1650

    Article  PubMed  Google Scholar 

  6. Schirmer U (2007) Pulmonalarterienkatheter in Anästhesie und Intensivmedizin. Anaesthesist 56:273–275

    Article  CAS  PubMed  Google Scholar 

  7. Broscheit J, Greim CA (2006) Ultraschall in der Anästhesie – TEE zur Diagnose und zum kardiovaskulären Monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther 41:750–757

    Article  PubMed  Google Scholar 

  8. Carl M, Alms A, Braun J et al (2007) Guidelines for intensive care in cardiac surgery patients: haemodynamic monitoring and cardio-circulatory treatment guidelines of the German Society for Thoracic and Cardiovascular Surgery and the German Society of Anaesthesiology and Intensive Care Medicine. Thorac Cardiovasc Surg 55:130–148

    Article  CAS  PubMed  Google Scholar 

  9. Connors AF Jr, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Article  PubMed  Google Scholar 

  10. Richard C, Warszawski J, Anguel N et al (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720

    Article  CAS  PubMed  Google Scholar 

  11. Harvey S, Harrison DA, Singer M et al (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366:472–477

    Article  PubMed  Google Scholar 

  12. Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. N Engl J Med 354:2213–2224

    Article  PubMed  Google Scholar 

  13. Nilsson LB, Nilsson JC, Skovgaard LT et al (2004) Thermodilution cardiac output – are three injections enough? Acta Anaesthesiol Scand 48:1322–1327

    Article  CAS  PubMed  Google Scholar 

  14. Vender JS (1998) Resolved: A pulmonary artery catheter should be used in the management of the critically ill patient. Pro. J Cardiothorac Vasc Anesth 12:9–12

    CAS  PubMed  Google Scholar 

  15. Munro HM, Wood CE, Taylor BL et al (1994) Continuous invasive cardiac output monitoring – the Baxter/Edwards Critical-Care Swan Ganz IntelliCath and Viligance system. Clin Intensive Care 5:52–55

    CAS  PubMed  Google Scholar 

  16. Steltzer H, Krenn CG, Krafft P et al (1997) The pulmonary artery catheter: current status in clinical practice. Acta Anaesthesiol Scand 111:84–87

    CAS  Google Scholar 

  17. Monchi M, Thebert D, Cariou D et al (1998) Clinical evaluation of the Abbott Qvue-OptiQ continuous cardiac output system in critically ill medical patients. J Crit Care 13:91–95

    Article  CAS  PubMed  Google Scholar 

  18. D’Ancona G, Parrinello M, Santise G et al (2009) Intraoperative validation of a new system for invasive continuous cardiac output measurement. Intensive Care Med 35:943–947

    Article  Google Scholar 

  19. Thierry S, Thebert D, Brocas E et al (2003) Evaluation of a new invasive continuous cardiac output monitoring system: the truCCOMS system. Intensive Care Med 29:2096–2099

    Article  PubMed  Google Scholar 

  20. Nelson LD (1997) The new pulmonary artery catheters: continuous venous oximetry, right ventricular ejection fraction, and continuous cardiac output. New Horiz 3:251–258

    Google Scholar 

  21. Urban P, Scheidegger D, Gabathuler J et al (1987) Thermodilution determination of right ventricular volume and ejection fraction: a comparison with biplane angiography. Crit Care Med 15:652–655

    Article  CAS  PubMed  Google Scholar 

  22. Hoeper MM, Tongers J, Leppert A et al (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 120:502–507

    Article  CAS  PubMed  Google Scholar 

  23. Hein M, Roehl AB, Baumert JH et al (2009) Continuous right ventricular volumetry by fast response thermodilution during right ventricular ischemia: head-to-head comparison with conductance catheter measurements. Crit Care Med 37:2962–2967

    Article  PubMed  Google Scholar 

  24. Bendjelid K, Schutz N, Suter PM et al (2004) Continuous SvO2 measurements and co-oximetry are not interchangeable immediately after cardiopulmonary bypass. Can J Anaesth 51:610–615

    Article  PubMed  Google Scholar 

  25. Groesdonk HV, Shpachenko D, Hanke T et al (2009) Continuous SvO2 monitoring is reliable after on-pump cardiac surgery. IFMBE Proceedings 25/7: 634–637; Springer, Berlin Heidelberg

    Google Scholar 

  26. Baele PL, McMichan JC, Marsh HM et al (1982) Continuous monitoring of mixed venous oxygen saturation in critically ill patients. Anesth Analg 61:513–517

    Article  CAS  PubMed  Google Scholar 

  27. Sleutjes BT, Kemps HM, Thijssen EJ et al (2008) The reliability of continuous measurement of mixed venous oxygen saturation during exercise in patients with chronic heart failure. Eur J Appl Physiol 102:493–496

    Article  CAS  PubMed  Google Scholar 

  28. Gehring H, Duembgen L, Peterlein M et al (2007) Hemoximetry as the „gold standard“? Error assessment based on differences among identical blood gas analyzer devices of five manufacturers. Anesth Analg 105:S24–S30

    Article  PubMed  Google Scholar 

  29. Marx G, Reinhart K (2006) Venous oximetry. Curr Opin Crit Care 12:263–268

    Article  PubMed  Google Scholar 

  30. Rivers EP, Ander DS, Powell D (2001) Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 7:204–211

    Article  CAS  PubMed  Google Scholar 

  31. Sander M, Spies CD, Foer A et al (2007) Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med 33:1719–1725

    Article  PubMed  Google Scholar 

  32. Varpula M, Karlsson S, Ruokonen E et al (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 2006 32:1336–1343

    Article  Google Scholar 

  33. Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9:R771–R779

    Article  PubMed  Google Scholar 

  34. Bland RD, Shoemaker WC, Abraham E et al (1985) Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med 13:85–90

    Article  CAS  PubMed  Google Scholar 

  35. Shoemaker WC, Appel PI, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  CAS  PubMed  Google Scholar 

  36. Wilson J, Woods I, Fawcett J et al (1999) Reducing the risk of major surgery: randomized controlled trial of preoptimization of oxygen delivery. BMJ 318:1099–1103

    CAS  PubMed  Google Scholar 

  37. Boyd O, Grounds M, Bennett D et al (1993) Preoperative increase of oxygen delivery reduces mortality in high-risk surgical patients. JAMA 270:2699

    Article  CAS  PubMed  Google Scholar 

  38. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  39. Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  40. Pölönen P, Ruokonen E, Hippeläinen M et al (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  PubMed  Google Scholar 

  41. Heyland DK, Cook DJ, King D et al (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24:517–524

    Article  CAS  PubMed  Google Scholar 

  42. Giglio MT, Marucci M, Testini M et al (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    Article  CAS  PubMed  Google Scholar 

  43. Brienza N, Giglio MT, Marucci M et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Article  PubMed  Google Scholar 

  44. Tuman KJ, McCarthy RJ, Spiess BD et al (1989) Effect of pulmonary artery catheterization on outcome in patients undergoing coronary artery surgery. Anesthesiology 70:199–206

    Article  CAS  PubMed  Google Scholar 

  45. O’Brien MM, Shroyer AL, Moritz TE et al (2004) Relationship between processes of care and coronary bypass operative mortality and morbidity. Med Care 42:59–70

    Article  Google Scholar 

  46. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    Article  CAS  PubMed  Google Scholar 

  47. Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  CAS  PubMed  Google Scholar 

  48. Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224

    Article  PubMed  Google Scholar 

  49. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  CAS  PubMed  Google Scholar 

  50. Binanay C, Califf RM, Hasselblad V et al (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294(13):1625–1633

    Article  PubMed  Google Scholar 

  51. Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients: a National Trauma Data Bank analysis of 53,312 patients. Crit Care Med 34:1597–1601

    Article  PubMed  Google Scholar 

  52. Chittock DR, Dhingra VK, Ronco JJ et al (2004) Severity of illness and risk of death associated with pulmonary artery catheter use. Crit Care Med 32:911–915

    Article  PubMed  Google Scholar 

  53. Bossert T, Gummert JF, Bittner HB et al (2006) Swan-Ganz catheter-induced severe complications in cardiac surgery: right ventricular perforation, knotting, and rupture of a pulmonary artery. J Card Surg 21:292–295

    Article  PubMed  Google Scholar 

  54. Scheer B, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6(3):199–204

    Article  PubMed  Google Scholar 

  55. Piercy M, Mcnicol L, Dinh DT et al (2009) Major complications related to the use of transesophageal echocardiography in cardiac surgery. J Cardiothorac Vasc Anesth 23:62–65

    Article  PubMed  Google Scholar 

  56. Zwissler B (2000) Akutes Rechtsherzversagen. Aetiologie – Pathophysiologie – Diagnose – Therapie. Anaesthesist 49:788–808

    Article  CAS  PubMed  Google Scholar 

  57. Magder S (2006) Central venous pressure: a useful but not so simple measurement. Crit Care Med 34:2224–2227

    Article  PubMed  Google Scholar 

  58. Xu D, Olivier NB, Mukkamala R (2009) Continuous cardiac output and left atrial pressure monitoring by long time interval analysis of the pulmonary artery pressure waveform: proof of concept in dogs. J Appl Physiol 106:651–661

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Der Autor M.H. hat seitens verschiedener Hersteller hämodynamischer Monitoringsysteme Forschungsunterstützung und Vortragshonorare erhalten; u. a. durch Edwards Lifesciences, Unterschleißheim, und COVIDIEN, Neustadt an der Donau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heringlake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heringlake, M., Heinze, H. Pulmonalarterienkatheter in der Anästhesiologie und operativen Intensivmedizin. Intensivmed 47, 345–353 (2010). https://doi.org/10.1007/s00390-009-0148-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-009-0148-7

Schlüsselwörter

Keywords

Navigation