Skip to main content

Advertisement

Log in

Diagnosis, outcome, and management of fetal abnormalities: fetal hydrocephalus

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

It has been recognized that the morphological fetal CNS findings detected in early development are not always the final features: occasionally they may not be determined in diagnosis and may change developmentally or chronologically during the fetal life in utero.

Discussion

Certain factors of the fetal chronology of CNS anomalies can cause irreversible changes during fetal life. These include: significant delay in the neuronal maturation process in fetal hydrocephalus developed in clinico-embryological stage II of the Perspective Classification of Congenital Hydrocephalus (PCCH), secondary neural injury in the intactly developing spinal cord above the neural placode in fetuses with spina bifida aperta (myeloschisis), histological "evolution" of tumors or dysgenetic CNS, and deformity of the normally developed intracranial or intraspinal CNS structures. Considering the current status of fetal surgery in general and technical advances promising improved outcomes, fetal neurosurgery can also be applied to the above-mentioned progressive pathology or pathophysiology in the fetal CNS. However, since the failure of the first trial of fetal neurosurgery in the 1980s, the prerequisites have still not been clarified. In order to use advanced neurosurgery techniques in the management of fetal CNS anomalies, these prerequisites have to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Aikawa H, Kobayashi S, Suzuki K (1986) Aqueductal lesions in 6-aminonicotinamide-treated suckling mice. Acta Neuropathol (Berl) 71:243–250

    Google Scholar 

  2. Babapour B, Oi S, Klekamp J, Boozari B, Hussein S, Samii M (2002) Congenital hydrocephalus and associated hydromyelia—a pathological study in experimental rat model. Nerv Syst Child 27:243–249

    Google Scholar 

  3. Baxi L, Warren W, Collins MH, Timor-Tritsch IE (1990) Early detection of caudal regression syndrome with transvaginal scanning. Obstet Gynecol 75:486–489

    CAS  PubMed  Google Scholar 

  4. Berry RJ (1961) The inheritance and pathogenesis of hydrocephalus-3 in the mouse. J Pathol Bacteriol 81:157–167

    Google Scholar 

  5. Broit A, Sidman RJ (1972) New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berl) 21:316–331

    Google Scholar 

  6. Bronshtein M, Zimmer E, Gershoni-Baruch R, Yoffe N, Meyer H, Blumenfeld Z (1991) First- and second-trimester diagnosis of fetal ocular defects and associated anomalies: report of eight cases. Obstet Gynecol 77:443–449

    CAS  PubMed  Google Scholar 

  7. Carton CA, Perry JH, Winter A, Tennyson V (1956) Studies of hydrocephalus in C57 blank mice. Trans Am Neurol Assoc 81:147–149

    Google Scholar 

  8. Clark FH (1932) Hydrocephalus: a hereditary character in the house mouse. Proc Natl Acad Sci USA 18:654–656

    Google Scholar 

  9. Clark SL, DeVore GR, Sabey PL (1988) Prenatal diagnosis of cysts of the fetal choroid plexus. Obstet Gynecol 72:585–587

    CAS  PubMed  Google Scholar 

  10. Clewell WH, Johnson ML, Meier PR, Newkirk JB, Zide SL, Hendee RW, Bowes WA Jr, Hecht F, O'Keeffe D, Henry GP, Shikes RH (1982) A surgical approach to the treatment of fetal hydrocephalus. N Engl J Med 306:1320–1325

    CAS  PubMed  Google Scholar 

  11. Comstock CH, Culp D, Gonzalez J, Boal DB (1985) Agenesis of the corpus callosum in the fetus: its evolution and significance. J Ultrasound Med 4:613–616

    CAS  PubMed  Google Scholar 

  12. D'Agostino AN, Kernohan JW, Brown JR (1963) The Dandy-Walker syndrome. J Neuropathol Exp Neurol 22:450–470

    CAS  Google Scholar 

  13. Deol MS (1964) The origin of the abnormalities of inner ear in Dreher mice. J Embryol Exp Morphol 12:727–733

    CAS  Google Scholar 

  14. Depp R, Sabbagha RE, Brown JT, Tamura RK, Reedy NJ (1983) Fetal surgery for hydrocephalus: successful in utero ventriculoamniotic shunt for Dandy-Walker syndrome. Obstet Gynecol 61:710–714

    CAS  PubMed  Google Scholar 

  15. Dinh DH, Wright RM, Hanigan WC (1990) The use of magnetic resonance imaging for the diagnosis of fetal intracranial anomalies. Childs Nerv Syst 6:212–215

    CAS  PubMed  Google Scholar 

  16. Dohrmann GJ (1972) Cervical spinal cord in experimental hydrocephalus. J Neurosurg 37:538–542

    CAS  PubMed  Google Scholar 

  17. Faulhauer K, Donauer E (1985) Experimental hydrocephalus and hydrosyringomyelia in the cat. Radiological findings. Acta Neurochir (Wien) 74:72–80

    Google Scholar 

  18. Fernell E, Uvebrant P, von Wendt L (1987) Overt hydrocephalus at birth—origin and outcome. Childs Nerv Syst 3:350–353

    CAS  PubMed  Google Scholar 

  19. Gardner WJ (1965) Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neursurg Psychiatry 28:247–259

    CAS  Google Scholar 

  20. Green MC (1970) The developmental effects of congenital hydrocephalus (ch) in the mouse. Dev Biol 23:585–608

    CAS  PubMed  Google Scholar 

  21. Gruneberg H (1943) Two new mutant genes in the house mouse. J Genet 45:22–28

    Google Scholar 

  22. Gruneberg H (1943) Congenital hydrocephalus in the mouse: a case of spurious pluritropism. J Genet 45:1–21

    Google Scholar 

  23. Hanigan WC, Gibson J, Kleopoulos NJ, Cusack T, Zwicky G, Wright RM (1986) Medical imaging of fetal ventriculomegaly. J Neurosurg 64:575–580

    CAS  PubMed  Google Scholar 

  24. Higashi K, Noda Y, Mufune H (1987) Pathological studies on the brain of congenital hydrocephalic rats. Shoni No Noshinkei 12:1–9

    Google Scholar 

  25. Hill LM, Martin JG, Fries J, Hixson J (1991) The role of the transcerebellar view in the detection of fetal central nervous system anomaly. Am J Obstet Gynecol 164:1220–1224

    CAS  PubMed  Google Scholar 

  26. Hirsch JF (1992) Surgery of hydrocephalus: past, present and future. Acta Neurochir (Wien) 116:155–160

    Google Scholar 

  27. Hoffman-Tretin JC, Horoupian DS, Koenigsberg M, Schnur MJ, Llena JF (1986) Lobar holoprosencephaly with hydrocephalus: antenatal demonstration and differential diagnosis. J Ultrasound Med 5:691–697

    CAS  PubMed  Google Scholar 

  28. Kalter H (1963) Experimental mammalian teratogenesis, a study of galactoflavin-induced hydrocephalus in mice. J Morphol 112:303–317

    Google Scholar 

  29. Kirkinen P, Serlo W, Jouppila P, Ryynanen M, Martikainen A (1996) Long-term outcome of fetal hydrocephaly. J Child Neurol 11:189–192

    CAS  PubMed  Google Scholar 

  30. Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berl) 54:211–218

    Google Scholar 

  31. Koyama T (1970) Erzeugung von Missbildungen im Gehirn durch Methyl-Nutrisi-Harnstoff und Athyl-Nitrose-Harnstoff an SD-JCL Ratten. Arch Jpn Chir 39:233–254

    CAS  Google Scholar 

  32. Masters C, Alpers M, Kakulas B (1977) Pathogenesis of reovirus type 1 hydrocephalus in mice. Significance of aqueductal changes. Arch Neurol 34:18–28

    CAS  PubMed  Google Scholar 

  33. McGahan JP, Phillips HE (1983) Ultrasonic evaluation of the size of the trigone of the fetal ventricle. J Ultrasound Med 2:315–319

    CAS  PubMed  Google Scholar 

  34. McGahan JP, Haesslein HC, Meyers M, Ford KB (1984) Sonographic recognition of in utero intraventricular hemorrhage. Am J Roentgenol 142:171–173

    CAS  Google Scholar 

  35. Meuli M, Meuli-Simmen C, Hutchins GM, Yingling CD, Hoffman KM, Harrison MR, Adzick NS (1995) In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1:342–347

    CAS  PubMed  Google Scholar 

  36. Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Hoffman KM, Harrison MR, Adzick NS (1995) Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 30:1028–1033

    CAS  PubMed  Google Scholar 

  37. Michejda M, Patronas N, Di Chiro G, Hodgen GD (1984) Fetal hydrocephalus. II. Amelioration of fetal porencephaly by in utero therapy in nonhuman primates. JAMA 251:2548–2552

    CAS  PubMed  Google Scholar 

  38. Michejda M, Queenan JT, McCullough D (1986) Present status of intrauterine treatment of hydrocephalus and its future. Am J Obstet Gynecol 155:873–882

    CAS  PubMed  Google Scholar 

  39. Monteagudo A, Reuss ML, Timor-Tritsch IE (1991) Imaging the fetal brain in the second and third trimesters using transvaginal sonography. Obstet Gynecol 77:27–32

    CAS  PubMed  Google Scholar 

  40. Mori T (1985) A study of the tellurium-induced experimental hydrocephalus. Neuropathology 6:355–365

    Google Scholar 

  41. Nakayama DK, Harrison MR, Berger MS, Chinn DH, Halks-Miller M, Edwards MS (1983) Correction of congenital hydrocephalus in utero. I. The model: intracisternal kaolin produces hydrocephalus in fetal lambs and rhesus monkeys. J Pediatr Surg 18:331–338

    CAS  PubMed  Google Scholar 

  42. Ohba N (1958) Formation of embryonic abnormalities of the mouse by a viral infection of mother animals. Acta Pathol Jpn 8:127–138

    Google Scholar 

  43. Oi S (1992) Is the hydrocephalic state progressive to become irreversible during fetal life? Surg Neurol 37:66–68

    Google Scholar 

  44. Oi S, Matsumoto S (1988) Natural history of subdural effusion in infants—prospective study of 87 cases. J Pediatr Neurosci 4:15–24

    Google Scholar 

  45. Oi S, Yamada H, Sasaki K et al (1985) [Diagnosis and treatment of fetal hydrocephalus. Problems in evaluation of the hydrocephalic state and selection for intrauterine shunt procedure.] Neurol Med Chir 25:195–202

    Google Scholar 

  46. Oi S, Yamada Y, Matsumoto S (1989) A prenatal CSF shunt procedure for fetal hydrocephalus, animal experimental model—pressure dynamics of intrauterine hydrocephalus and fetal ventriculo-mater peritoneal (FV-MP) shunt. Shoni No Noshinke (Jpn) 14:215–221

    Google Scholar 

  47. Oi S, Matsumoto S, Katayama K, Mochizuki M (1990) Pathophysiology and postnatal outcome of fetal hydrocephalus. Childs Nerv Syst 6:338–345

    CAS  PubMed  Google Scholar 

  48. Oi S, Tamaki N, Kondo T et al (1990) Massive congenital intracranial teratoma diagnosed in utero. Childs Nerv Syst 6:459–461

    CAS  PubMed  Google Scholar 

  49. Oi S, Tamaki N, Matsumoto S, Katayama K, Mochizuki M (1990) Prenatal neuroimaging in fetal dysraphism. Neurosonology 3:90–96

    Google Scholar 

  50. Oi S, Kudo H, Yamada H, Kim S, Hamano S, Urui S, Matsumoto S (1991) Hydromyelic hydrocephalus: correlation of hydromyelia with various stages of hydrocephalus in postshunt isolated compartments. J Neurosurg 74:371–379

    CAS  PubMed  Google Scholar 

  51. Oi S, Sato S, Matsumoto S (1994) A new classification of congenital hydrocephalus: prospective classification of congenital hydrocephalous (PCCH) and postnatal prognosis. I. A proposal of a new classification of fetal/neonatal/infantile hydrocephalus based on neuronal maturation process and chronological changes. Jpn J Neurosurg 3:122–127

    Google Scholar 

  52. Oi S, Saito M, Tamaki N, Matsumoto S (1994) Ventricular volume reduction technique—a new surgical concept for the intracranial transposition of encephalocele. Neurosurgery 34:443–448

    CAS  PubMed  Google Scholar 

  53. Oi S, Matsumoto S, Katayama K, Mochizuki M (1995) Pathophysiology and postnatal outcome of fetal hydrocephalus. Curr Trends Hydrol (Tokyo) 5:43–49

    Google Scholar 

  54. Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12:292–302

    CAS  PubMed  Google Scholar 

  55. Oi S, Honda Y, Hidaka M, Sato O, Matsumoto S (1998) Intrauterine high-resolution magnetic resonance imaging in fetal hydrocephalus and prenatal estimation of postnatal outcomes with perspective classification. J Neurosurg 88:685–694

    CAS  PubMed  Google Scholar 

  56. Oi S, Hidaka M, Honda Y, Togo K, Shinoda M, Shimoda M, Tsugane R, Sato O (1999) Neuroendoscopic surgery for specific forms of hydrocephalus. Childs Nerv Syst 15:56–68

    CAS  PubMed  Google Scholar 

  57. Oi S, Babapour B, Klekamp J, Samii M (1999) Prerequisites for fetal neurosurgery: management of central nervous system anomalies toward the 21st century. Crit Rev Neurosurg 9:252–261

    Article  PubMed  Google Scholar 

  58. Platt LD, DeVore GR (1985) Modification of fetal intraventricular amniotic shunt. Am J Gynecol 152:1044–1045

    CAS  Google Scholar 

  59. Pretorius DH, Davis K, Manco-Johnson ML, Manchester D, Meier PR, Clewell WH (1985) Clinical course of fetal hydrocephalus: 40 cases. Am J Roentgenol 144:827–831

    CAS  Google Scholar 

  60. Raimondi AJ, Bailey OT, McLone DG, Lawson RF, Echeverry A (1973) The pathophysiology and morphology of murine hydrocephalus in hydrocephalus 3 and Ch mutants. Surg Neurol 1:50–55

    CAS  PubMed  Google Scholar 

  61. Raimondi AJ, Clark SJ, McLone DG (1976) Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77

    CAS  PubMed  Google Scholar 

  62. Sasaki S, Goto H, Nagano H, Furuya K, Omata Y et al (1983) Congenital hydrocephalus revealed in the inbred rat. LEW/Jms. Neurosurgery 13:548–554

    CAS  PubMed  Google Scholar 

  63. Sato K, Naomi N, Akira S, Shozo I (1985) Experimental production of myeloschisis, Chiari malformation type II, posterior fossa hydrocephalus and other malformation related to craniospinal dysraphism in rat fetuses by single intragastric administration of ethylenethiourea. Childs Nerv Syst 1:1–6

    Google Scholar 

  64. Saunders RL, Simmons GM, Edwards WH et al (1985) A cranial nail for fetal shunting. Childs Nerv Syst 1:185–187

    CAS  PubMed  Google Scholar 

  65. Shinoda M, Hidaka M, Lindqvist E, Soderstrom S, Matsumae M, Oi S, Sato O, Tsugane R, Ebendal T, Olason L (2001) NGF, NT-3 and Trk C mRNAs, but not TrkA mRNA, are upregulated in the paraventricular structures in experimental hydrocephalus. Childs Nerv Syst 17:704–712

    Article  CAS  PubMed  Google Scholar 

  66. Takagi T, Hashimoto N, Togari H, Suzumori K (1988) [Holoprosencephaly with Dandy-Walker cyst diagnosed in utero by MRI: report of a case.] No To Hattatsu 20:237–241

  67. Takahashi Y, Tsutsumi H, Hashi K (1990) Two cases of vein of Galen aneurysm in neonates: clinical problems and its treatment. Shoni No Noshinkei 15:253–260

    Google Scholar 

  68. Thickman D, Mintz M, Mennuti M, Kressel HY (1984) MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061

    CAS  PubMed  Google Scholar 

  69. Tulipan N, Bruner JP (1999) Fetal surgery for spina bifida. Lancet 30:406

    Google Scholar 

  70. Tulipan N et al (1999) Intrauterine myelomeningocele repair reverses preexisting hind brain herniation. Pediatr Neurosurg 31:137–142

    Article  CAS  PubMed  Google Scholar 

  71. Yamada H, Oi S, Tamaki N, Matsumoto S, Sudo K (1992) Prenatal aqueductal stenosis as a cause of congenital hydrocephalus in the inbred rat. LEW/Jms. Childs Nerv Syst 8:394–398

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuo Oi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oi, S. Diagnosis, outcome, and management of fetal abnormalities: fetal hydrocephalus. Childs Nerv Syst 19, 508–516 (2003). https://doi.org/10.1007/s00381-003-0790-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-003-0790-5

Keywords

Navigation