Skip to main content
Log in

Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelenda M, Ledesma A, Rial E, Puerta M (2003) Leptin administration to cold-acclimated rats reduces both food intake and brown adipose tissue thermogenesis. J Therml Biol 28:525–530

    Article  CAS  Google Scholar 

  • Barbara C, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  Google Scholar 

  • Berthoud (2005) A new role for leptin as a direct satiety signal from the stomach. Am J Physiol Regul Integr Comp Physiol 288:796–797

    Google Scholar 

  • Bing C, Frankish HM, Pickavance L, Wang Q, Hopkins DFC, Stock MJ, Williams G. (1998) Hyperphagia in cold-exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY. Am J Physiol Regul Integr Comp Physiol 274:R62–R68

    CAS  Google Scholar 

  • Bozinovic F, Gallardo PA, Visser RH, Corte´s A (2003) Seasonal acclimatization in water flux rate, urine osmolality and kidney water channels in free-living degus: molecular mechanisms, physiological processes and ecological implications. J Exp Biol 206:2959–2966

    Article  PubMed  CAS  Google Scholar 

  • Bozinovic F, Bacigalupe LD, Vasquez RA, Visser GH, Veloso C, Kenagy G.J (2004) Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure. Comp Biochem Physiol A 137:597–604

    Article  Google Scholar 

  • Brunhoff CK, Galbreath E, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole ( Microtus oeconomus ): implications for late Quaternary biogeography of high latitudes. Mol Ecol 12:957–968

    Article  PubMed  CAS  Google Scholar 

  • Buckley CA, Schneider JE (2003) Peptides that Regulate Food Intake Food hoarding is increased by food deprivation and decreased by leptin treatment in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 285:R1021–R1029

    PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  PubMed  CAS  Google Scholar 

  • Commins SP, Watson PM, Frampton IC, Gettys TW (2001) Leptin selectively reduces white adipose tissue in mice via a UCP1-dependent mechanism in brown adipose tissue. Am J Physiol Endocrinol Metab 280:E372–E377

    PubMed  CAS  Google Scholar 

  • Dijk G.V (2001) The role of leptin in the regulation of energy balance and adiposity. J Neuroendocrinol (13):913–921

  • Feist DD, Feist CF (1986) Effect of cold, short day and melatonin on thermogenesis, body weight and reproductive organs in Alaskan red-backed voles. J Comp Physiol B 156:741–746

    Article  PubMed  CAS  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  • Haim A (1996) Food and energy intake, non-shivering thermogenesis and daily rhythm of body temperature in the bushy-tailed gerbil Sekeetamys calurus: The role of photoperiod manipulations. J Therm Biol 21(1):37–42

    Article  Google Scholar 

  • Heldmaier G (1971) Zitterfreie wärmebildung und körpergröße bei säugetieren. Z Vergl Physiologie 73:222–248

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J (1982) Nonshivering thermogenesisand cold resistance during seasonal acclimatization in the Djungarian hamster. J Comp Physiol B 149:1–9

    Article  Google Scholar 

  • Janskey L (1973) Non-shievering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132

    Google Scholar 

  • Jefimow M, Wojciechowski M, Tegowska E (2004a) Seasonal changes in the thermoregulation of laboratory golden hamsters during acclimation to seminatural outdoor conditions. Comp Biochem Physiol A 139(3):379–388

    Article  Google Scholar 

  • Jefimow M, Wojciechowski M, Tegowska E (2004b) Seasonal and daily changes in the capacity for nonshivering thermogenesis in the golden hamsters housed under semi-natural conditions. Comp Biochem Physiol A 137(2):297–309

    Article  Google Scholar 

  • Jia XX, Sun RY (1986) Characteristics of the resting metabolic rate of the root vole at high altitude. Acta Zool Sinica 32: 280–287 (In Chinese with English summary )

    Google Scholar 

  • Johnson MS, Onorato DP, Gower BA, Nagy TR (2004) Weight change affects serum leptin and corticosterone in the collared lemming. Gen Comp Endocrinol 136(1):30–36

    Article  PubMed  CAS  Google Scholar 

  • Klause S, Heldmaier G, Ricquier D (1988) Seasonal acclimation of blank voles and wood mice: noshievering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J Comp Physiol B 158:157–164

    Article  Google Scholar 

  • Klingenspor M, Dickopp A, Heldmaier G, Klaus S (1996) Short photoperiod reduces leptin gene expression in white and brown adipose tissue of Djungarian hamster. FEBS Letts 399:290–294

    Article  CAS  Google Scholar 

  • Klingenspor M, Niggemann H, Heldmaier G. (2000) Modulation of leptin sensititivity by short photoperiod acclimation in the Djungarian hamster Phodopus sungorus . J Comp Physiol B 170:37–43

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6:248–261

    Article  PubMed  CAS  Google Scholar 

  • Kronfeld-Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G. (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol Biochem Zool 73(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Li QF, Sun RY, Huang CX, Wang ZK, Liu XT, Hou JJ (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A 129:949–961

    Article  CAS  Google Scholar 

  • Li XS (2005) Mechanism of body mass regulation and thermogenesis in Brandt’s voles and Mongolian gerbils. Ph.D Dissertation. Institute of Zoology, the Chinese Academy of Sciences

  • Li XS, Wang DH (2005a) Regulation of body weight and thermogenesis in seasonally acclimatized Brandt’s voles (Microtus brandti). Horm Behav 48(3):321–328

    Article  Google Scholar 

  • Li XS, Wang DH (2005b) Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Meriones unguiculatus): the roles of short photoperiod and cold. J Comp Physiol B 175:593–600

    Article  CAS  Google Scholar 

  • Li YN, Zhao XQ, Cao GM, Zhao L, Wang QX (2004) Analysis on climates and vegetation productivity background at Haibei Alpine Meadow Ecosystem Research Station. Plateau Metrol 23(4):558–567 (In Chinese with English summary)

    Google Scholar 

  • Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagents. J Biol Chem 193:265

    PubMed  CAS  Google Scholar 

  • Lynch GR (1973) Seasonal changes in thermogenesis, organ weights, and body composition in the whited-footed mouse, Peromyscus leucopus. Oecologia (Berl) 13:363–376

    Article  Google Scholar 

  • Nagy TR, Gower BA, Stetson MH (1995) Endocrine correlates of seasonal body mass dynamics in the collared lemming Dicrostonyx groenlandicus. Am Zool 35:246–258

    CAS  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Rezende EL, Bozinovic F (2001) When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiol Biochem Zool 74:325–332

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    PubMed  CAS  Google Scholar 

  • Paracchini V, Pedotti P, Taioli E (2005) Genetics of leptin and obesity: a huge review. Am J Epidemiol 162(2):101–114

    Article  PubMed  Google Scholar 

  • Praun CV, Burkert M, Gessner M, Klingenspor M (2001) Tissue specific expression and cold-induced mRNA levels of uncoupling proteins in the Djungarian hamster. Physiol Biochem Zool 74(2):203–211

    Article  Google Scholar 

  • Ricquier D, Bouilloud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345:161–179

    Article  PubMed  CAS  Google Scholar 

  • Rousseau K, Atcha Z, Loudon ASI (2003) Leptin and seasonal mammals. J Neuroendo 15:409–414

    Article  CAS  Google Scholar 

  • Scantlebury M, Oosthuizen MK, Speakman JR, Jackson CR, Bennett NC (2005) Seasonal energetics of the Hottentot golden mole at 1500 m altitude. Physiol Behav 84(5):739–745

    Article  PubMed  CAS  Google Scholar 

  • Scarpace PJ, Matheny M, Pollock BH, Tumer N (1997) Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol Endocrinol Metab 273:E226–E230

    CAS  Google Scholar 

  • Wang DH, Wang ZW (1989) Strategies for survival of small mammals in a cold environment I. Seasonal variations in the weight and structure of brown adipose tissue in Ochotona curzoniae and Microtus oeconomus. Acta Theriol Sinica 9:176–185 (In Chinese with English summary)

  • Wang DH, Wang ZW (1996) Seasonal variations in thermogenesis and energy requirements of plateau pikas Ochotona curzoniae and root voles Microtus oeconomus. Acta Theriol 41(3):225–236

    Google Scholar 

  • Wang DH, Wang ZW (2000) Metabolism and thermoregulation in root vole (Microtus oeconomus) from the Qinghai-Tibetan Plateau. Mamm Biol 65:15–20

    Google Scholar 

  • Wang DH, Sun RY, Wang ZW (1996) Maximum energy assimilation rate in the root voles (Microtus oeconomus). Acta Zool Sinica 42(1):35–41 (In Chinese with English summary)

    Google Scholar 

  • Wang DH, Sun RY, Wang ZW, Liu JS (1999) Effects of temperature and photoperiod on thermogenesis in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus). J Comp Physiol B 169(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Wang DH, Wang ZW, Feng Y (1991) Strategies for survival of small mammals in a cold alpine environment. Thermoregulation of Ochotona cansus and adaptive convergence of small mammals to cold and high altitude. Alpine Meadow Ecosystem 3:125–137 (In Chinese with English summary)

    Google Scholar 

  • Wang ZW, Zeng JX, Han YC (1979) Studies on the metabolism rates of the mouse hare (Ochotona curzoniae) and the mole rat (Myospalax fontanierii). Acta Zool Sinica 25(1):75–85 (In Chinese with English summary)

    Google Scholar 

  • Wunder BA, Dobkin DS, Gettinger RT (1977) Shifts of thermogenesis in the prairie vole (Microtus ochrogaster): strategies for survival in a seasonal environment. Oecologia 29:11–26

    Article  Google Scholar 

  • Zeng JX, Wang ZW, Han YC (1981) On the daily activity rhythm of five small mammals. Acta Theriol Sinica 1:189–197 (In Chinese with English summary)

    Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and it’s human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZQ (2005) Seasonal changes in thermogenesis, energy budgets and immune function in Mongolian gerbils (Meriones unguiculatus). Ph.D Dissertation. Institute of Zoology, the Chinese Academy of Sciences

  • Zhao ZJ, Wang DH (2005) Short photoperiod enhances thermogenic capacity in Brandt’s voles. Physiol Behav 85(2):143–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Ying-Nian Li, Northwest Plateau Institute of Biology, the Chinese Academy of Sciences, for helping catch the animals. Thanks to Dr. Martin Klingenspor, Department of Biology, Philipps-University Marburg, Germany, for providing the hamster UCP1 antibody. Thanks to all the members of Animal Physiological Ecology Group, Institute of Zoology of the Chinese Academy of Sciences, for helping the experiments. This study was financially supported by the National Natural Science Foundation of China (No. 30430140 and No. 30170151) and the Chinese Academy of Sciences (No. KSCX2-SW-103) to DHW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hua Wang.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JM., Zhang, YM. & Wang, DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B 176, 663–671 (2006). https://doi.org/10.1007/s00360-006-0089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0089-4

Keywords

Navigation