Skip to main content
Log in

Detektion und Interpretation somatischer Varianten in der Molekularpathologie

Detection and interpretation of somatic variants in molecular pathology

  • Schwerpunkt: Präzisionsonkologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Datenauswertung ist aufgrund zunehmender Datenmengen und Informationsquellen ein kritischer Schritt bei der Parallelsequenzierung.

Fragestellung

Darstellung der Fallstricke bei der Auswertung der Variantenlisten, die bei der Parallelsequenzierung generiert werden, Empfehlungen zu Softwareanwendungen und Datenbanken.

Material und Methoden

Aufzeigen der angewandten Filterschritte und Auswertekriterien und -vorschriften anhand von Beispielen aus dem Arbeitsalltag, vergleichende Analyse vorhandener Datenbanken somatischer Varianten, Beschreibung des Aufbaus einer individualisierten Datenbank.

Ergebnisse

Das Filtern der Varianten ist ein mehrstufiger Prozess, bei dem Informationen aus verschiedenen Datenbanken einfließen können. Die Plausibilität des „variant callings“ sollte im Integrative Genomics Viewer überprüft und die Varianten anschließend nach den Vorschriften der Human Genome Variation Society (HGVS) benannt werden. Zur Interpretation der Varianten können verschiedene Datenbanken herangezogen werden, die jeweils Vor- und Nachteile zeigen. Eine individualisierte Datenbank kann mit der Open-source-Anwendung cBioPortal aufgebaut werden.

Schlussfolgerung

Es können verschiedene Anwendungen und Datenbanken zur Analyse von Daten der Parallelsequenzierung genutzt werden. Der Einsatz ist u. a. von lokalen Gegebenheiten abhängig. Vor dem Einsatz sollten alle Arbeitsabläufe einer extensiven Validierung unterzogen werden.

Abstract

Background

Due to the increasing amount of data and sources of information, data evaluation is a crucial step in parallel sequencing.

Objectives

Illustration of pitfalls in evaluating the variant list of parallel sequencing and recommendations regarding software tools and databases.

Methods

Description of filtering steps used, demonstration of criteria and recommendations for annotation by examples from everyday work, comparative analysis of databases with somatic variants, description of the installation of an individualized database.

Results

Variant filtering is a multistep process using information from different databases. The plausibility of variant calling should be verified using the Integrative Genomics Viewer and variants should be described according to the Human Genome Variation Society (HGVS) recommendations. Different databases, which all show advantages and disadvantages, are available for variant interpretation. An individualized database can be built up with the open-source tool cBioPortal.

Conclusions

Different tools and databases might be used for the analysis of parallel sequencing data. The application depends on, amongst other things, the local situation and has to be extensively validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Awad MM, Oxnard GR, Jackman DM et al (2016) MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c‑met Overexpression. J Clin Oncol 34:721–730

    Article  CAS  PubMed  Google Scholar 

  2. Chakravarty D, Gao J, Phillips SM et al (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol 10:16

    Google Scholar 

  3. Cingolani P, Platts A, Le Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92

    Article  CAS  Google Scholar 

  4. Deans ZC, Fairley JA, Den Dunnen JT et al (2016) HGVS nomenclature in practice: an example from the united kingdom national external quality assessment scheme. Hum Mutat 37:576–578

    Article  PubMed  Google Scholar 

  5. Den Dunnen JT (2017) Describing sequence variants using HGVS nomenclature. Methods Mol Biol 6417:6442–6440

    Google Scholar 

  6. Den Dunnen JT (2016) Sequence variant descriptions: HGVS nomenclature and mutalyzer. Curr Protoc Hum Genet 90:1–7

    Google Scholar 

  7. Den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124

    Article  Google Scholar 

  8. Doig KD, Fellowes A, Bell AH et al (2017) PathOS: a decision support system for reporting high throughput sequencing of cancers in clinical diagnostic laboratories. Genome Med 9:17–427

    Article  Google Scholar 

  9. Forbes SA, Beare D, Boutselakis H et al (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  CAS  PubMed  Google Scholar 

  10. Freeman PJ, Hart RK, Gretton LJ et al (2018) VariantValidator: accurate validation, mapping, and formatting of sequence variation descriptions. Hum Mutat 39:61–68

    Article  PubMed  Google Scholar 

  11. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:2004088

    Article  Google Scholar 

  12. Griffith M, Spies NC, Krysiak K et al (2017) CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hart RK, Rico R, Hare E et al (2015) A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature. Bioinformatics 31:268–270

    Article  CAS  PubMed  Google Scholar 

  14. Heining C, Horak P, Gröschel S et al (2016) Personalisierte Medizin: Strukturen, Tumorboards, Visionen. Med Genet 28:452–459

    CAS  Google Scholar 

  15. http://Varnomen.Hgvs.Org. Zugegriffen: 31. Jan. 2019

  16. http://Www.Broadinstitute.Org/Igv. Zugegriffen: 31. Jan. 2019

  17. https://Genomenexus.Org/#/Home. Zugegriffen: 31. Jan. 2019

  18. Jang Y, Choi T, Kim J et al (2018) An integrated clinical and genomic information system for cancer precision medicine. BMC Med Genomics 11:18–347

    Article  Google Scholar 

  19. Kurnit KC, Bailey AM, Zeng J et al (2017) “Personalized cancer therapy”: a publicly available precision oncology resource. Cancer Res 77:e123–e126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li MM, Datto M, Duncavage EJ et al (2017) Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mateo J, Chakravarty D, Dienstmann R et al (2018) A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 29:1895–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mclaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:16–974

    Article  Google Scholar 

  24. O’leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:8

    Article  Google Scholar 

  25. Patterson SE, Liu R, Statz CM et al (2016) The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics 10:16–61

    Article  Google Scholar 

  26. Robinson JT, Thorvaldsdottir H, Wenger AM et al (2017) Variant review with the integrative genomics viewer. Cancer Res 77:e31–e34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeuchi S, Okuda S (2018) Knowledge base toward understanding actionable alterations and realizing precision oncology. Int J Clin Oncol 24:123–130

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinformatics 14:178–192

    Article  CAS  PubMed  Google Scholar 

  31. Tong JH, Yeung SF, Chan AW et al (2016) MET amplification and Exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res 22:3048–3056

    Article  CAS  PubMed  Google Scholar 

  32. Vis JK, Vermaat M, Taschner PE et al (2015) An efficient algorithm for the extraction of HGVS variant descriptions from sequences. Bioinformatics 31:3751–3757

    CAS  PubMed  Google Scholar 

  33. Wagner AH, Walsh B, Mayfield G et al (2018) A harmonized meta-knowledgebase of clinical interpretations of cancer genomic variants. bioRxiv:366856

    Book  Google Scholar 

  34. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:3

    CAS  Google Scholar 

  35. Yeh P, Chen H, Andrews J et al (2013) DNA-Mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT): a catalog of clinically relevant cancer mutations to enable genome-directed anticancer therapy. Clin Cancer Res 19:1894–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yen JL, Garcia S, Montana A et al (2017) A variant by any name: quantifying annotation discordance across tools and clinical databases. Genome Med 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yohe S, Thyagarajan B (2017) Review of clinical next-generation sequencing. Arch Pathol Lab Med 141:1544–1557

    Article  PubMed  Google Scholar 

  38. Zerbino DR, Achuthan P, Akanni W et al (2018) Ensembl 2018. Nucleic Acids Res 46:D754–D761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Merkelbach-Bruse.

Ethics declarations

Interessenkonflikt

S. Merkelbach-Bruse, J. Rehker, J. Siemanowski und F. Klauschen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

K. W. Schmid, Essen

H. A. Baba, Essen

H.-U. Schildhaus, Essen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkelbach-Bruse, S., Rehker, J., Siemanowski, J. et al. Detektion und Interpretation somatischer Varianten in der Molekularpathologie. Pathologe 40, 243–249 (2019). https://doi.org/10.1007/s00292-019-0603-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-019-0603-6

Schlüsselwörter

Keywords

Navigation