Skip to main content

Advertisement

Log in

Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this experimental study is to investigate cardiovascular tolerance of blockade of beta-adrenergic receptors in an endotoxin model.

Design

Prospective, randomized, controlled study.

Setting

Animal laboratory in a university medical center.

Methods

Ten anesthetized, mechanically ventilated pigs were challenged with intravenous lipopolysaccharide (LPS) to achieve a status of profound hypodynamic shock. Systemic and pulmonary hemodynamics and cardiac output were continuously monitored throughout the 5-h study period, and blood samples were taken at baseline (T − 30 min), 1 h from the beginning of LPS infusion (T + 60 min), and every 2 h (T + 180 min and T + 300 min). Animals were randomly assigned to continuous intravenous esmolol infusion titrated to decrease heart rate by 20% or isotonic saline.

Results

Esmolol decreased heart rate by 20%, while in the saline group, heart rate increased by 7% and 22% at T + 180 min and T + 300 min, respectively (p < 0.001). In esmolol-treated animals, cardiac index decreased by 9% at T + 180 min and by 2% at T + 300 min, and in controls by 14% at T + 180 min and by 27% at T + 300 min (p = 0.870). In esmolol-treated animals, median (interquartile range, IQR) stroke index was 31 (6) and 47 (11) ml/min/m2 at T + 180 min and T + 300 min, respectively, and decreased steadily from 45 (20) to 18 (13) ml/min/m2 in controls (p = 0.030). There were no significant differences between groups for any other hemodynamics variables, except for systemic vascular resistance (SVR) (p = 0.017).

Conclusions

In large animals with endotoxemic shock, continuous infusion of esmolol, a selective beta-1 adrenergic blocker, titrated to decrease heart rate by 20%, was well tolerated and may offset LPS-induced cardiac dysfunction by a preload positive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78

    Article  PubMed  CAS  Google Scholar 

  2. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    PubMed  CAS  Google Scholar 

  3. Gulick T, Chung MK, Pieper SJ (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757

    Article  PubMed  CAS  Google Scholar 

  4. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958

    Article  PubMed  CAS  Google Scholar 

  5. Benedict CR, Grahame-Smith DG (1978) Plasma noradrenaline and adrenaline concentrations and dopamine beta hydroxylase activity in patients with shock due to septicemia, trauma, and heamorrhage. Q J Med 185:1–20

    Google Scholar 

  6. Goldstein B, Kempski MH, Stair D, Tipton RB, De King D, De Long DJ, De Asla R, Cox C, Lund N, Woolf PD (1995) Autonomic modulation of heart rate variability during endotoxin shock in rabbits. Crit Care Med 23:1694–1702

    Article  PubMed  CAS  Google Scholar 

  7. Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160:458–465

    PubMed  CAS  Google Scholar 

  8. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 11:2837–2849

    Article  Google Scholar 

  9. Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Article  PubMed  CAS  Google Scholar 

  10. Bristow MR, Feldman AM, Adams KF Jr, Goldstein S (2003) Selective versus nonselective beta-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail 9:444–453

    Article  PubMed  CAS  Google Scholar 

  11. de Montmollin E, Aboab J, Mansart A, Annane D (2009) Bench-to-bedside review: beta-adrenergic modulation in sepsis. Crit Care 13:230

    Article  PubMed  Google Scholar 

  12. Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, Heinroth K, Müller-Werdan U (2009) Impaired regulation of cardiac function in sepsis, SIRS, MODS. Can J Physiol Pharmacol 87:266–274

    Article  PubMed  CAS  Google Scholar 

  13. Zaugg M, Schaub MC, Pasch T (2002) Modulation of beta-adrenergic receptor subtype activities in perioperative medicine: mechanisms and sites of action. Br J Anaesth 88:101–123

    Article  PubMed  CAS  Google Scholar 

  14. Mangano DT, Layug EL, Wallace A, Tateo I (1996) Effect of atenolol on mortality and cardiovascular morbidity after non cardiac surgery. N Engl J Med 335:1713–1720

    Article  PubMed  CAS  Google Scholar 

  15. Poldermans D, Boersma E, Bax JJ (1999) The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. N Engl J Med 341:1789–1794

    Article  PubMed  CAS  Google Scholar 

  16. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229

    Article  PubMed  CAS  Google Scholar 

  17. Gore DC, Wolfe RR (2006) Hemodynamic and metabolic effects of selective beta1 adrenergic blockade during sepsis. Surgery 139:686–694

    Article  PubMed  Google Scholar 

  18. Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotate Y, Ishizaka A, Takeda J (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301

    Article  PubMed  CAS  Google Scholar 

  19. Ackland GL, Yao ST, Rudiger A, Dyson A, Stidwill R, Poputnikov D, Singer M, Gourine AV (2010) Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Crit Care Med 38:388–394

    Article  PubMed  CAS  Google Scholar 

  20. Jourdain M, Carrette O, Tournoys A, Fourrier F, Mizon C, Mangalaboyi J, Goudemand J, Mizon J, Chopin C (1997) Effects of inter-alpha-inhibitor in experimental endotoxic shock and disseminated intravascular coagulation. Am J Respir Crit Care Med 156:1825–1833

    PubMed  CAS  Google Scholar 

  21. Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, Le Jemtel TH, Cotter G, Shock Investigators (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the shock trial registry. J Am Coll Cardiol 44:340–348

    Article  PubMed  Google Scholar 

  22. Kelley KW, Curtis SE, Marzan GT, Karara HM, Anderson CR (1973) Body surface area of female swine. J Anim Sci 36:927–930

    PubMed  CAS  Google Scholar 

  23. Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York

    Google Scholar 

  24. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  25. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control AC-19:716–723

    Article  Google Scholar 

  26. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  27. Schmidt DA, Tumbleson ME (1986) Swine hematology. In: Tumbleson ME (ed) Swine in biomedical research. Plenum, New York, pp 767–782

    Google Scholar 

  28. Volz-Zang C, Eckrich B, Jahn P, Schneidrowski B, Schulte B, Palm D (1994) Esmolol, an ultrashort acting selective beta 1-adrenoreceptor antagonist: pharmacodynamic and pharmacokinetic properties. Eur J Clin Pharmacol 46:399–404

    Article  PubMed  CAS  Google Scholar 

  29. Berk JL, Hagen JF, Beyer WH, Gerber MJ, Dochat GR (1969) The treatment of endotoxin shock by beta adrenergic blockade. Ann Surg 169:74–81

    Article  PubMed  CAS  Google Scholar 

  30. POISE Study Group, Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D, Chrolavicius S, Greenspan L, Pogue J, Pais P, Liu L, Xu S, Málaga G, Avezum A, Chan M, Montori VM, Jacka M, Choi P (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371:1839–1847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the Société de Réanimation de Langue Française.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djillali Annane.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboab, J., Sebille, V., Jourdain, M. et al. Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med 37, 1344–1351 (2011). https://doi.org/10.1007/s00134-011-2236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2236-y

Keywords

Navigation