Skip to main content

Wirkungsmechanismen der EKT

  • Chapter
  • First Online:
Elektrokonvulsionstherapie kompakt

Zusammenfassung

Die Elektrokonvulsionstherapie (EKT) wirkt bei klinisch heterogenen Syndromen: Neben antidepressiven, antimanischen, antipsychotischen, antikonvulsiven, antisuizidalen, stimmungsstabilisierenden und antikatatonen Eigenschaften wurden positive Effekte auf motorische Symptome des Morbus Parkinson beschrieben. Eine umfassende Theorie des Wirkmechanismus existiert bislang noch nicht. In human- und tierexperimentellen Studien mit EKT bzw. ECS, dem Tiermodell der EKT, konnten jedoch Veränderungen verschiedener potenziell antidepressiv wirksamer Hormone, Neurotransmitter und ihrer Rezeptoren, verschiedener Neuropeptide und neurotropher Faktoren festgestellt werden. Zudem konnten eine EKT-bedingte kurzzeitige Öffnung der Blut-Hirn-Schranke und eine Zunahme des zerebralen Blutflusses nachgewiesen werden. Mittels Bildgebung konnten eine teilweise Normalisierung von Fasertraktanomalien sowie eine Normalisierung der funktionellen Konnektivität depressiver Patienten durch EKT gezeigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Abrams R, Swartz CM (1985) Electroconvulsive therapy and prolactin release: Relation to treatment response in melancholia. Convuls Ther 1: 38–42

    Google Scholar 

  • Adams HE, Hoblit PR, Sutker PB (1968) Electroconvulsive shock, brain acetylcholinesterase activity and memory. Physiol Behav 4: 113–116

    Article  Google Scholar 

  • Altar CA, Whitehead RE, Chen R et al (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54: 703–709

    Article  CAS  PubMed  Google Scholar 

  • Altar CA, Laeng P, Jurata LW (2004) Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 24: 2667–2677

    Article  CAS  PubMed  Google Scholar 

  • Barkai AI, Durkin M, Nelson HD (1990) Localized alterations of dopamine receptor binding in rat brain by repeated electroconvulsive shock: an autoradiographic study. Brain Res 529: 208–213

    Article  CAS  PubMed  Google Scholar 

  • Biegon A, Israeli M (1986) Localization of the effects of electroconvulsive shock on ß-Adrenoreceptors in the rat brain. European J Pharmacol 123: 329–334

    Article  CAS  Google Scholar 

  • Blendy JA, Perry DC, Pabreza LA, Kellar KJ (1991) Electroconvulsive shock increases alpha 1b- but not alpha 1a-adrenoceptor binding sites in rat cerebral cortex. J Neurochem 57: 1548–1555

    Article  CAS  PubMed  Google Scholar 

  • Bocchio-Chiavetto L, Zanardini R, Bortolomasi M et al (2006) Electroconvulsive therapy (ECT) increases serum brain derived neurotrophic factor (BDNF) in drug resistant depressed patients. Eur Neuropsychopharmacol 16: 620–624

    Article  CAS  PubMed  Google Scholar 

  • Bonne O, Krausz Y, Shapira B et al (1996) Increased cerebral blood flow in depressed patients responding to electroconvulve therapy. J Nucl Med 37: 1075–1080

    CAS  PubMed  Google Scholar 

  • Calker D van, Biber K (2005) The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem Res 30: 1205–1217

    Article  Google Scholar 

  • Cassidy F, Weiner RD, Cooper TD, Carroll BJ (2010) Combined catecholamine and indoleamine depletion following response to ECT. Br J Psychiatry 196: 493–494

    Article  PubMed  Google Scholar 

  • Coffey CE, Lucke J, Weiner RD et al (1995) Seizure threshold in electroconvulsive therapy (ECT) II. The anticonvulsant effect of ECT. Biol Psychiatry 37: 777–788

    Article  CAS  PubMed  Google Scholar 

  • Devanand DP, Shapira B, Petty F et al (1995) Effects of electroconvulsive therapy on plasma GABA. Convuls Ther 11: 3–13

    CAS  PubMed  Google Scholar 

  • Du MY, Wu QZ, Yue Q et al (2012) Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 36: 11–16

    Article  PubMed  Google Scholar 

  • Elfving B, Wegener G (2012) Electroconvulsive seizures stimulate the VEGF pathway via mTORC1. Synapse 66: 340–345

    Article  CAS  PubMed  Google Scholar 

  • Esel E, Kose K, Hacimusalar Y et al (2008) The effects of electroconvulsive therapy on GABAergic function in major depressive patients. J ECT 24: 224–228

    Article  CAS  PubMed  Google Scholar 

  • Florkowski CM, Crozier IG, Nightingale S et al (1996) Plasma cortisol, PRL, ACTH, AVP and corticotrophin releasing hormone responses to direct current cardioversion and electroconvulsive therapy. Clin Endocrinol (Oxf) 44: 163–168

    Google Scholar 

  • Fochtmann LJ, Cruciani R, Aiso M, Potter WZ (1989) Chronic electroconvulsive shock increases D-1 receptor binding in rat substantia nigra. Eur J Pharmacol 167: 305–306

    Article  CAS  PubMed  Google Scholar 

  • Förstl H, Hautzinger M, Roth G (2006) Neurobiologie psychischer Störungen. Springer, Heidelberg

    Book  Google Scholar 

  • Folkerts H (1996) The ictal electroencephalogram as a marker for the efficacy of electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 246: 155–164

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia L, Llewellyn-Jones V, Fernandez Fernandez I et al (1998) Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus. Neuroreport 9: 73–77

    Article  CAS  PubMed  Google Scholar 

  • Glue P, Costello MJ, Pert A et al (1990) Regional neurotransmitter responses after acute and chronic electroconvulsive shock. Psychopharmacology (Berl) 100: 60–65

    Article  CAS  Google Scholar 

  • Gray JA, Green AR (1987) Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. Br J Pharmacol 92: 357–362

    Article  CAS  PubMed  Google Scholar 

  • Gur E, Dremencov E, Garcia F et al (2002) Functional effects of chronic electroconvulsive shock on serotonergic 5-HT(1A) and 5-HT(1B) receptor activity in rat hippocampus and hypothalamus. Brain Res 952: 52–60

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa H, Shimizu M, Nishida A et al (1994) Increase in serotonin 1A receptors in the dentate gyrus as revealed by autoradiographic analysis following repeated electroconvulsive shock but not imipramine treatment. Neuropsychobiology 30: 53–56

    Article  CAS  PubMed  Google Scholar 

  • Hofmann P, Loimer N, Chaudhry HR et al (1996) 5-Hydroxy-indolacetic-acid (5-HIAA) serum levels in depressive patients and ECT. J Psychiat Res 30: 209–216

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid rezeptor hypothesis of depression. Neuropsychopharmacology 23: 477–501

    Article  CAS  PubMed  Google Scholar 

  • Hosoda K, Duman RS (1993) Regulation of beta 1-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 60: 1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JP, Mørk A (2004) The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024: 183–192

    Google Scholar 

  • Jiménez-Vasquez PA, Diaz-Cabiale Z, Caberlotto L et al (2007) Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression. Eur Neuropsychopharmacol 17: 298–308

    Article  PubMed  Google Scholar 

  • Kang I, Miller LG, Moises J, Bazan NG (1991) GABAA receptor mRNAs are increased after electroconvulsive shock. Psychopharmacol Bull 27: 359–363

    CAS  PubMed  Google Scholar 

  • Kling MA, Geracioti TD, Licinio J et al (1994) Effects of electroconvulsive therapy on the CRH-ACTH-cortisol system in melancholic depression: preliminary findings. Psychopharmacol Bull 30: 489–494

    CAS  PubMed  Google Scholar 

  • Kondratyev A, Ved R, Gale K (2002) The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 114: 411–416

    Article  CAS  PubMed  Google Scholar 

  • Kronfol Z, Hamdan-Allen G, Goel K, Hill EM (1991) Effects of single and repeated electroconvulsive therapy sessions on plasma ACTH, prolactin, growth hormone and cortisol concentrations. Psychoneuroendocrinology 16: 345–352

    Article  CAS  PubMed  Google Scholar 

  • Lammers CH, Diaz J, Schwartz JC, Sokoloff P (2000) Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 5: 378–388

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Huang X, Wu Q et al (2013) Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 38: 49–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma XM, Mains RE, Eipper BA (2002) Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock. Neuropsychopharmacology 27: 55–71

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–9110

    CAS  PubMed  Google Scholar 

  • Mann JJ (1998) Neurobiological correlates of the antidepressant action of electroconvulsive therapy. J ECT 14: 172–180

    Article  CAS  PubMed  Google Scholar 

  • Mann JJ, Kapur S (1994) Elucidation of biochemical basis of the antidepressant action of electroconvulsive therapy by human studies. Psychopharmacol Bull 30: 445–453

    CAS  PubMed  Google Scholar 

  • Mathé AA (1999) Neuropeptides and electroconvulsive treatment. J ECT 15: 60–75

    PubMed  Google Scholar 

  • McGarvey KA, Zis AP, Brown EE et al (1993) ECS-induced dopamine release: effects of electrode placement, anticonvulsant treatment, and stimulus intensity. Biol Psychiatry 34: 152–157

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, Zanardini R, Abate M et al (2011) Vascular Endothelial Growth Factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 35: 1322–1325

    Article  CAS  PubMed  Google Scholar 

  • Morinobu S, Nibuya M, Duman RS (1995) Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex. Neuropsychopharmacology 12: 221–228

    Article  CAS  PubMed  Google Scholar 

  • Naylor P, Stewart CA, Wright SR et al (1996) Repeated ECS induces GluR1 mRNA but not NMDAR1A-G mRNA in the rat hippocampus. Brain Res Mol Brain Res 35: 349–353

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Bissette G, Akil H, Fink M (1991) Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotropin-releasing factor, beta-endorphin and somatostatin. Br J Psychiatry 158: 59–63

    Article  CAS  PubMed  Google Scholar 

  • Newton SS, Collier EF, Hunsberger J et al (2003) Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenetic factors. J Neurosci 23: 10841–10851

    CAS  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15: 7539–7547

    CAS  PubMed  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16: 2365–2372

    CAS  PubMed  Google Scholar 

  • Nikisch G, Mathé AA (2008) CSF monoamine metabolites and neuropeptides in depressed patients before and after electroconvulsive therapy. Eur Psychiatry 23: 356–359

    Article  PubMed  Google Scholar 

  • Nobler MS, Sackeim HA, Prohovnik I et al (1994) Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch Gen Psychiatry 51: 884–897

    Article  CAS  PubMed  Google Scholar 

  • Nobuhara K, Okugawa G, Minami T et al (2004) Effects of electroconvulsive therapy on frontal white matter in late-life depression: a diffusion tensor imaging study. Neuropsychobiology 50: 48–53

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Yoshimura R, Ikenouchi-Sugita A et al (2008) Efficacy of electroconvulsive therapy is associated with changing blood levels of homovanillic acid and brain-derived neurotrophic factor (BDNF) in refractory depressed patients: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 32: 1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Ottosson J-O (1960) Experimental studies of the mode of action of electroconvulsive therapy. Acta Psychiatr Scand 145 (Suppl): 1–141

    Google Scholar 

  • Pandey SC, Isaac L, Davis JM, Pandey GN (1991) Similar effects of treatment with desipramine and electroconvulsive shock on 5-hydroxytryptamine1A receptors in rat brain. Eur J Pharmacol 202: 221–225

    Article  CAS  PubMed  Google Scholar 

  • Pandey GN, Pandey SC, Isaac L, Davis JM (1992) Effect of electroconvulsive shock on 5-HT2 and alpha 1-adrenoceptors and phosphoinositide signalling system in rat brain. Eur J Pharmacol 226: 303–310

    Article  CAS  PubMed  Google Scholar 

  • Perera TD, Coplan JD, Lisanby SH et al (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27: 4894–4901

    Article  CAS  PubMed  Google Scholar 

  • Perrin JS, Merz S, Bennett DM et al (2012) Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci U S A 109: 5464–5468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfleiderer B, Michael N, Erfurth A et al (2003) Effective electronconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 122: 185–192

    Article  CAS  PubMed  Google Scholar 

  • Piccinni A, Del Debbio A, Medda P et al (2009) Plasma Brain-Derived Neurotrophic Factor in treatment-resistant depressed patients receiving electroconvulsive therapy. Eur Neuropsychopharmacol 19: 349–355

    Article  CAS  PubMed  Google Scholar 

  • Preskorn SH, Irwin GH, Simpson S et al (1981) Medical therapies for mood disorders alter the blood-brain barrier. Science 213: 469–471

    Article  CAS  PubMed  Google Scholar 

  • Riddle WJ, Scott AI, Bennie J et al (1993) Current intensity and oxytocin release after electroconvulsive therapy. Biol Psychiatry 33: 839–841

    Article  CAS  PubMed  Google Scholar 

  • Rudorfer MV, Risby ED, Osman OT et al (1991) Hypothalamic-pituitary-adrenal axis and monoamine transmitter activity in depression: a pilot study of central and peripheral effects of electroconvulsive therapy. Biol Psychiatry 29: 253–264

    Article  CAS  PubMed  Google Scholar 

  • Sackeim HA (1994) Central issues regarding the mechanisms of action of electroconvulsive therapy: directions for future research. Psychopharmacol Bull 30: 281–308

    CAS  PubMed  Google Scholar 

  • Sackeim HA, Devanand DP, Prudic J (1991) Stimulus intensity, seizure threshold, and seizure duration: impact on the efficacy and safety of electroconvulsive therapy. Psychiatr Clin North Am 14: 803–843

    CAS  PubMed  Google Scholar 

  • Sadek AR, Knight GE, Burnstock G (2011) Electroconvulsive therapy: a novel hypothesis for the involvement of purinergic signalling. Purinergic Signal 7, 447–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saijo T, Takano A, Suhara T et al (2010) Electroconvulsive therapy decreases dopamine D2receptor binding in the anterior cingulate in patients with depression: a controlled study using positron emission tomography with radioligand [11¹C]FLB 457. J Clin Psychiatry 71: 793–799

    Article  PubMed  Google Scholar 

  • Sanacora G, Mason GF, Rothman DL et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160: 577–579

    Article  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809

    Article  CAS  PubMed  Google Scholar 

  • Sattin A (1999) The role of TRH and related peptides in the mechanism of action of ECT. J ECT 15: 76–92

    Article  CAS  PubMed  Google Scholar 

  • Scott AI, Douglas RH, Whitfield A, Kendell RE (1990) Time course of cerebra; magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 156: 551–553

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Lindefors N, Hurd Y, Sharp T (1995) Electroconvulsive shock increases dopamine D1 and D2 receptor mRNA in the nucleus accumbens of the rat. Psychopharmacology (Berl) 120: 333–340

    Article  CAS  Google Scholar 

  • Strome EM, Clark CM, Zis AP, Doudet DJ (2005) Electroconvulsive shock decreases binding to 5-HT2 receptors in nonhuman primates: an in vivo positron emission tomography study with [18F] setoperone. Biol Psychiatry 57: 1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Motohashi N, Uema T et al (2007) Changes in regional cerebral blood flow during acute electroconvulsive therapy in patients with depression: positron emission tomographic study. Br J Psychiatry 190: 63–68

    Article  CAS  PubMed  Google Scholar 

  • Tang SW, Helmeste D, Leonard B (2012) Is neurogenesis relevant in depression and in the mechanism of antidepressant drug action? A critical review. World J Biol Psychiatry 13: 402–412

    Article  PubMed  Google Scholar 

  • Tortella FC, Long JB (1988) Characterization of opioid peptide-like anticonvulsant activity in rat cerebrospinal fluid. Brain Res 456: 139–146

    Article  CAS  PubMed  Google Scholar 

  • Watkins CJ, Pei Q, Newberry NR (1998) Differential effects of electroconvulsive shock on the glutamate receptor mRNAs for NR2A, NR2B and mGluR5b. Brain Res Mol Brain Res 61: 108–113

    Article  CAS  PubMed  Google Scholar 

  • Weizman A, Gil-Ad I, Grupper D et al (1987) The effect of acute and repeated electroconvulsive treatment on plasma beta-endorphin, growth hormone, prolactin and cortisol secretion in depressed patients. Psychopharmacology 93: 122–126

    Article  CAS  PubMed  Google Scholar 

  • Winston SM, Hayward MD, Nestler EJ, Duman RS (1990) Chronic electroconvulsive seizures down-regulate expression of the immediate-early genes c-fos and c-jun in rat cerebral cortex. J Neurochem. 54: 1920–1925

    Article  CAS  PubMed  Google Scholar 

  • Yatham LM, Liddle PF, Lam RW et al (2010) Effect of electroconvulsive therapy on brain 5-HT2 receptors in major depression. Br J Psychiatry 196: 474–497

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Janouschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janouschek, H., Nickl-Jockschat, T. (2013). Wirkungsmechanismen der EKT. In: Grözinger, M., Conca, A., Nickl-Jockschat, T., Di Pauli, J. (eds) Elektrokonvulsionstherapie kompakt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25629-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25629-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25628-8

  • Online ISBN: 978-3-642-25629-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics