Skip to main content
  • 1256 Accesses

Zusammenfassung

Die zunehmenden Möglichkeiten der Fundusbildgebung waren eine wichtige Voraussetzung für die Forschungsfortschritte bei Netzhauterkrankungen. Die monochromatische und die Farbphotographie boten Lichtbildaufnahmen des Augenhintergrundes. Die Einführung der Fluoreszein-Angiographie ermöglichte es Ophthalmologen, die vaskuläre Anatomie und Physiologie in zuvor unerreichbarer Weise zu untersuchen und zu dokumentieren [1]. Die Angiographie mit Indozyaningrün erweiterte die Möglichkeiten, den okulären Blutkreislauf abzubilden, insbesondere den der Choroidea [2]. Mit Hilfe dieser Farbstoffe wurde es möglich, indirekt Informationen über andere Schichten des Augenhintergrundes zu erhalten, im Speziellen über das retinale Pigmentepithel (RPE). Diese indirekten Methoden umfassen die Suche nach einer erhöhten oder verminderten Transmission der darunterliegenden choroidalen Fluoreszenz, eine Beurteilung der Menge von Färbung und Leckage sowie die Nutzung stereoskoper Hinweise zur Konturbestimmung auf der Ebene des RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Spaide RF (1999) Fluorescein Angiography. In: Spaide RF (ed) Diseases of the Retina and Vitreous. Saunders, Philadelphia, p 29–38

    Google Scholar 

  2. Tittl MK, Slakter JS, Spaide RF, Sorenson J, Guyer D (1999) Indocyanine Green Videoangiography. In Spaide, RF. Diseases of the Retina and Vitreous. Saunders, Philadelphia, pp 39–46

    Google Scholar 

  3. Holz F, Schmitz-Valckenberg S, Spaide RF, Bird AC (2007) Atlas of Fundus Autofluorescence Imaging. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  4. Delori FC, Dorey CK, Staurenghi G, et al. (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–29

    PubMed  CAS  Google Scholar 

  5. von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–12

    Article  PubMed  CAS  Google Scholar 

  6. Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86

    Article  PubMed  CAS  Google Scholar 

  7. Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41 (Suppl 2):15–28

    Article  PubMed  CAS  Google Scholar 

  8. Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–53

    Article  PubMed  CAS  Google Scholar 

  9. Suter M, Reme C, Grimm C, et al. (2000) Age-related macular degeneration. The lipofuscin component n-retinyl-n-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–30

    Article  PubMed  CAS  Google Scholar 

  10. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–9.

    PubMed  CAS  Google Scholar 

  11. Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem :29354–60

    Google Scholar 

  12. Fishkin N, Jang YP, Itagaki Y, et al. (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 1:1101–5

    Article  PubMed  CAS  Google Scholar 

  13. Dillon J, Wang Z, Avalle LB, Gaillard ER (2004) The photochemical oxidation of A2E results in the formation of a 5,8,5’,8’-bisfuranoid oxide. Exp Eye Res 79:537–42

    Article  PubMed  CAS  Google Scholar 

  14. Avalle LB, Wang Z, Dillon JP, Gaillard ER (2004) Observation of A2E oxidation products in human retinal lipofuscin. Exp Eye Res 78:895–8

    Article  PubMed  CAS  Google Scholar 

  15. Sparrow JR, Zhou J, Ben-Shabat S, et al. (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2Eladen RPE. Invest Ophthalmol Vis Sci 43:1222–7

    PubMed  Google Scholar 

  16. Fox IJ, Wood EH (1957) Application of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye. Proc Mayo Clin 32:541

    CAS  Google Scholar 

  17. Kwiterovich KA, Maguire MG, Murphy RP, et al. (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–42

    PubMed  CAS  Google Scholar 

  18. Yannuzzi LA, Rohrer KT, Tindel LJ, et al. (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–7

    PubMed  CAS  Google Scholar 

  19. Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al. (1994) Adverse reactions due to indocyanine green. Ophthalmology 101:529–33

    PubMed  CAS  Google Scholar 

  20. Obana A, Miki T, Hayashi K, et al. (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118:749–53

    PubMed  CAS  Google Scholar 

  21. Fineman MS, Maguire JI, Fineman SW, Benson WE (2001) Safety of indocyanine green angiography during pregnancy: a survey of the retina, macula, and vitreous societies. Arch Ophthalmol 119:353–5

    PubMed  CAS  Google Scholar 

  22. Costa DL, Huang SJ, Orlock DA, et al. (2003) Retinal-choroidal indocyanine green dye clearance and liver dysfunction. Retina 23:557–61

    Article  PubMed  Google Scholar 

  23. Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  24. Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular Pseudodrusen Are Subretinal Drusenoid Deposits. Ophthalmology 117:303–312.e1

    Article  PubMed  Google Scholar 

  25. Pauleikhoff D, Zuels S, Sheraidah GS, et al. (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–53

    PubMed  CAS  Google Scholar 

  26. Arnold JJ, Quaranta M, Soubrane G, et al. (1997) Indocyanine green angiography of drusen. Am J Ophthalmol 124:344–56

    PubMed  CAS  Google Scholar 

  27. Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology. 2003;110:392–9

    Article  PubMed  Google Scholar 

  28. Holz FG, Bellmann C, Margaritidis M, et al. (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:145–52

    Article  PubMed  CAS  Google Scholar 

  29. Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age–related macular degeneration. Ophthalmology 1996;103:2042–53

    PubMed  CAS  Google Scholar 

  30. Yannuzzi LA, Negrao S, Iida T, et al. (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–34

    Article  PubMed  CAS  Google Scholar 

  31. Gass JD, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–51

    Article  PubMed  Google Scholar 

  32. Schmidt-Erfurth U, Michels S, Barbazetto I, Laqua H (2002) Photodynamic effects on choroidal neovascularization and physiological choroid. Invest Ophthalmol Vis Sci 43:830–41

    PubMed  Google Scholar 

  33. Spaide RF, Leys A, Herrmann-Delemazure B, et al. (1999) Radiation- associated choroidal neovasculopathy. Ophthalmology 106:2254–60

    Article  PubMed  CAS  Google Scholar 

  34. Spaide R (2008) Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 28:5–35

    Article  PubMed  Google Scholar 

  35. Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–54

    Article  PubMed  Google Scholar 

  36. Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in agerelated macular degeneration. Am J Ophthalmol 147:644–52

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spaide, R. (2011). Imaging bei AMD. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20870-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20870-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20869-0

  • Online ISBN: 978-3-642-20870-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics