Skip to main content

Mosquito Research Techniques

  • Chapter
  • First Online:
Mosquitoes

Abstract

Basic knowledge about the distribution, abundance, seasonality and ecology of different mosquito species is essential for a successful control campaign against these insect vectors. For example, knowledge of population dynamics and migration behaviour of the target organisms are crucial to the design for a control strategy. In parasitological and epidemiological studies, the interaction between the parasite and pathogen, and the vector and host, must be evaluated in order to successfully suppress mosquito-borne diseases. In the initial phases of all mosquito control campaigns, detailed entomological studies are necessary. In this chapter, the most important methods of mosquito research are presented. A complete review of mosquito sampling techniques and the analysis of collected data are given by Silver and Service (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Acree FJ et al (1968) L-lactic acid: a mosquito attractant isolated form humans. Science 161:1346–1347

    Article  CAS  PubMed  Google Scholar 

  • Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT, Wirtz R (1999) Malaria vectors in a traditional dry zone village in Sri Lanka. Am J Trop Med Hyg 60(3):421–429

    Article  CAS  PubMed  Google Scholar 

  • ASTM (2006a) Standard test methods of field testing topical applications of compounds as repellents for medically important and pest arthropods (including insects, ticks and mites). ASTM 94:E939

    Google Scholar 

  • ASTM (2006b) Standard test methods for laboratory testing of non-commercial mosquito repellent formulations on the skin. ASTM 94:E951

    Google Scholar 

  • Bahnck CM, Fonseca DM (2006) Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg 75:251–255

    Article  CAS  PubMed  Google Scholar 

  • Balestrino F, Benedict MQ, Gilles JR (2012) A new larval tray and rack system for improved mosquito mass rearing. J Med Entomol 49(3):595–605

    Article  CAS  PubMed  Google Scholar 

  • Balestrino F, Puggioli A, Gilles JR, Bellini R (2014) Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS One 9(3):e91914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbosa RM, Souto A, Eiras AE, Regis L (2007) Laboratory and field evaluation of an oviposition trap for Culex quinquefasciatus (Diptera: Culicidae). Mem Inst Oswaldo Cruz 102(4):523–529

    Article  PubMed  Google Scholar 

  • Barnard DR (2005) Biological assay methods for mosquito repellents. J Am Mosq Control Assoc 21(4):12–16

    Article  PubMed  Google Scholar 

  • Barnard DR, Xue RD (2004) Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol 41(4):726–730

    Article  CAS  PubMed  Google Scholar 

  • Bar-Zeev M, Maibach HI, Khan AA (1977) Studies on the attraction of Aedes aegypti (Diptera: Culicidae) to man. J Med Entomol 14:113–120

    Article  CAS  PubMed  Google Scholar 

  • Batovska J, Blacket MJ, Brown K, Lynch SE (2016) Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol 6(9):3001–3011

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker N (1989) Life strategies of mosquitoes as an adaptation to their habitats. Bull Soc Vector Ecol 14(1):6–25

    Google Scholar 

  • Becker N, Zgomba M, Petric D, Ludwig M (1995) Comparison of carbon dioxide, octenol and a host-odor as mosquito attractants. Med Vet Entomol 9:56–60

    Article  Google Scholar 

  • Becker N, Pfitzner WP, Czajka C, Kaiser A (2016) Anopheles (Anopheles) petragnani Del Vecchio 1939 – a new mosquito species for Germany. Parasitol Res. https://doi.org/10.1007/s00436-016-50145

  • Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP II, Koech DK (1988) Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol 25:9–16

    Article  CAS  PubMed  Google Scholar 

  • Bellini R, Carrieri M, Burgio G, Bacchi M (1996) Efficacy of different ovitraps and binomial sampling in Aedes albopictus surveillance activity. J Am Mosq Control Assoc 12:632–636

    CAS  PubMed  Google Scholar 

  • Benedictis J, Chow-Shaffer E, Costero A, Clark GG, Edman DD, Scott TW (2003) Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico using PCR-based DNA profiling. Am J Trop Med Hyg 68(4):447–452

    Article  Google Scholar 

  • Bernier UR et al (2003) Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol 40:653–656

    Article  CAS  PubMed  Google Scholar 

  • Bhatt RM, Sharma RC, Yadav RS, Sharma VP (1989) Resting of mosquitoes in outdoor pit shelters in Kheda district, Gujarat. Indian J Malariol 26(2):75–81

    CAS  PubMed  Google Scholar 

  • Bohart RM, Washino RK (1978) Mosquitoes of California, 3rd edn. Univ Calif Div Agr Sci Berkeley, Publ No. 4084, p 153

    Google Scholar 

  • Boorman J, Mellor PS, Boreham PFL, Hewett RS (1977) A latex agglutination test for the identification of blood meals of Culicoides (Diptera: Ceratopogonidae). Bull Entomol Res 67:305–311

    Article  Google Scholar 

  • Bosch OJ, Geier M, Boeckh J (2000) Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 25(3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Breteau H (1954) La fievere jaune en Afrique-Occidentale Francaise. Un aspect de la medicine preventive massive. Bull WHO 11:453–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WL, Eisner T, Whittaker RH (1970) Allomones and kairomones: transspecific chemical messengers. Bioscience 20(1):21–22

    Article  CAS  Google Scholar 

  • Buckner EA, Williams KF, Marsicano AL, Latham MD, Lesser CR (2017) Evaluating the vector control potential of the In2Care® Mosquito Trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. J Am Mosq Control Assoc 33(3):193–199

    Article  PubMed  Google Scholar 

  • Bull CG, King WV (1923) The identification of the blood meal of mosquitoes by means of the precipitin test. Am J Hyg 3:491–496

    Google Scholar 

  • Bunner BL, Perich MJ, Boobar LR (1989) Culicidae (Diptera) mortality resulting from insecticide aerosols compared with mortality from droplets on sentinel cages. J Med Entomol 26(3):222–225

    Article  CAS  PubMed  Google Scholar 

  • Burkett-Cadena ND, Mullen GR (2008) Comparison of infusions of commercially available garden products for collection of container-breeding mosquitoes. J Am Mosq Control Assoc 24(2):236–243

    Article  PubMed  Google Scholar 

  • Burkot TR, Goodman WG, DeFoliart GR (1981) Identification of mosquito blood meals by immunosorbent assay. Am J Trop Med Hyg 30(6):1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Butterworth DE (1979) Separation of aedine eggs from soil sample debris using hydrogene peroxide. Mosq News 39(1):139–141

    Google Scholar 

  • Carroll SP, Loye J (2006) PMD, a registered botanical mosquito repellent with deet-like efficacy. J Am Mosq Control Assoc 22:507–514

    Article  PubMed  Google Scholar 

  • Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54. https://doi.org/10.1146/annurev.ento.45.1.1

    Article  CAS  PubMed  Google Scholar 

  • Chadee DD, Corbet PS (1987) Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: a preliminary study. Ann Trop Med Parasitol 81:151–161

    Article  CAS  PubMed  Google Scholar 

  • Chadee DD, Corbet PS (1990) A night-time role of the oviposition site of the mosquito Aedes aegypti (L.) (Diptera: plastic Culicidae). Ann Trop Med Parasitol 84:429–433

    Article  CAS  PubMed  Google Scholar 

  • Clark GG, Seda H, Gubler DJ (1994) Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10(1):119–124

    CAS  PubMed  Google Scholar 

  • Clements AN (1963) The physiology of mosquitoes. Pergamon Press, Oxford, p 395

    Google Scholar 

  • Cockcroft A, Cosgrove JB, Wood RJ (1998) Comparative repellency of commercial formulations of deet, permethrin and citronellal against the mosquito Aedes aegypti, using a collagen membrane technique compared with human arm tests. Med Vet Entomol 12(3):289–294

    Article  CAS  PubMed  Google Scholar 

  • Connor ME, Monroe WM (1923) Stegomyia indices and their value in yellow fever control. Am J Trop Med Hyg 3:9–19

    Article  Google Scholar 

  • Cosgrove JB, Wood RJ, Petrić D, Evans DT, RHR A (1994) A convenient mosquito membrane feeding system. J Am Mosq Control Assoc 10(3):434–436

    CAS  PubMed  Google Scholar 

  • Croset H, Papierok B, Rioux JA, Gabinaud A, Cousserans J, Arnaud D (1976) Absolute estimates of larval populations of culicid mosquitoes: comparison of ‘capture-recapture’, ‘removal’ and ‘dipping’ methods. Ecol Ent 1:251–256

    Article  Google Scholar 

  • Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    Article  CAS  PubMed  Google Scholar 

  • Cywinska A, Hunter FF, Herbert N (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424

    Article  CAS  PubMed  Google Scholar 

  • Degener CM et al (2014) Evaluation of the effectiveness of mass trapping with BG-sentinel traps for dengue vector control: a cluster randomized controlled trial in Manaus, Brazil. J Med Entomol 51(2):408–420

    Article  CAS  PubMed  Google Scholar 

  • Dekker T et al (2002) L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol 16:91–98

    Article  CAS  PubMed  Google Scholar 

  • della Torre A (1997) Polytene chromosome preparation from Anopheline mosquitoes. In: Crampton JM, Beard CB, Louis C (eds) Molecular biology of insect disease vectors: a methods manual. Chapman & Hall, London, pp 329–336

    Chapter  Google Scholar 

  • Dennett JA, Vessey NY, Parsons RE (2004) A comparison of seven traps used for collection of Aedes albopictus and Aedes aegypti originating from a large tire repository in Harris County (Houston), Texas. J Am Mosq Control Assoc 20:342–349

    PubMed  Google Scholar 

  • DiMenna MA, Bueno R Jr, Parmenter RR, Norris DE, Sheyka JM, Molina JL, La Beau EM, Hatton ES, Glass GE (2006) Comparison of mosquito trapping method efficacy for West Nile virus surveillance in New Mexico. J Am Mosq Control Assoc 22(2):246–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RO, Brust RA (1972) Mosquitoes of Manitoba. III. Ecology of larvae in the Winnipeg area. Can Ent 104:961–968

    Article  Google Scholar 

  • Eiras AE, Jepson PC (1994) Responses of female Aedes aegypti (Diptera: Culicidae) to host odours and convection currents using an olfactometer bioassay. Bull Entomol Res 84:207–2011

    Article  Google Scholar 

  • Englbrecht C et al (2015) Evaluation of BG-Sentinel trap as a management tool to reduce Aedes albopictus nuisance in an urban environment in Italy. J Am Mosq Control Assoc 31(1):16–25

    Article  PubMed  Google Scholar 

  • Environmental Protection Agency, EPA (1999) Insect repellents for human skin and outdoor premises. OPPTS 810.3700

    Google Scholar 

  • Evans BR, Brevier GA (1969) Measurements of field populations of Aedes aegypti with the ovitrap in 1968. Mosq News 29:347–353

    Google Scholar 

  • Fansiri T, Fontaine A, Diancourt L et al (2013) Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses. PLoS Genet 9(8):e1003621. https://doi.org/10.1371/journal.pgen.1003621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farajollahi A et al (2009) Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J Med Entomol 46(4):919–925

    Article  PubMed  Google Scholar 

  • Fay RW, Eliason DA (1966) A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq News 26:531–535

    Google Scholar 

  • Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Foster PG, Bergo ES, Bourke BP, Oliveira TM, Nagaki SS, Sant’Ana DC et al (2013) Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus). PLoS One 8:e54063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freier JE, Francy DB (1991) A duplex cone trap for the collection of adult Aedes albopictus. J Am Mosq Control Assoc 7:73–79

    CAS  PubMed  Google Scholar 

  • French WL, Baker RH, Kitzmiller JB (1962) Preparation of mosquito chromosomes. Mosq News 22:377–383

    Google Scholar 

  • Fritz GN, Kline DL, Daniels E (1989) Improved techniques for rearing Anopheles freeborni. J Am Mosq Control Assoc 2:201–207

    Google Scholar 

  • Geier M, Sass H, Boeckh J (1996) A search for components in human body odor that attract females of Aedes aegypti. In: Olfaction in mosquito-host interactions. Ciba Foundation, London, pp 132–148

    Google Scholar 

  • Geier M, Bosch OJ, Boeckh J (1999a) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648

    PubMed  Google Scholar 

  • Geier M, Bosch OJ, Boeckh J (1999b) Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 24:647–653

    Article  CAS  PubMed  Google Scholar 

  • Gentry JW, Moore CG, Hayes DE (1967) Preliminary report on soluble antigen fluorescent antibody technique for identification of host source of mosquito blood meals. Mosq News 27:141–143

    Google Scholar 

  • Gerberg EJ (1970) Manual for mosquito rearing and experimental techniques. J Am Mosq Control Assoc 5:1–109

    Google Scholar 

  • Gilles MT, Wilkes TJ, Jones MDR (1978) Evaluation of a new technique for recording the direction of flight of mosquitoes (Diptera: Culicidae) in the field. Bull Ent Res 68(1):145–152

    Article  Google Scholar 

  • Gillies MT (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res 70:525–532

    Article  Google Scholar 

  • Gomes LAM, Duarte R, Lima DC, Diniz BS, Serrao ML, Labarthe N (2001) Comparison between precipitin and ELISA test in the blood meal detection of Aedes aegypti (Linnaeus) and Aedes fluviatilis (Lutz) mosquitoes experimentally fed on feline, canine and human hosts. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 96(5):693–695

    Article  CAS  Google Scholar 

  • Gonzales KK, Hansen IA (2016) Artificial diets for mosquitoes. Int J Environ Res Public Health 13(12). https://doi.org/10.3390/ijerph13121267

  • Graziosi C, Sakai RK, Romans P (1990) Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 27:905–912

    Article  CAS  PubMed  Google Scholar 

  • Green CA (1972) Cytological maps for the practical identification of females of the three freshwater species of the Anopheles gambiae complex. Ann Trop Med Parasitol 66:143–147

    Article  CAS  PubMed  Google Scholar 

  • Green CA, Hunt RH (1980) Interpretation of variation in ovarian polytene chromosomes of Anopheles funestus Giles, and A. parensis Gillies. Genetica 51:187–195

    Article  Google Scholar 

  • Harbach RE (2007) The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Linnaeus tercentenary: progress in invertebrate taxonomy. Magnolia Press, Auckland, pp 591–688

    Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoreses in human genetics. North Holland, Amsterdam, p 512

    Google Scholar 

  • Hartberg WK (1971) Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 45(6):847–850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball S, deWaard J (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321

    Article  CAS  Google Scholar 

  • Hemmerter S, Slapeta J, Beebe NW (2009) Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol 50:317–325

    Article  CAS  PubMed  Google Scholar 

  • Hillis DE (1996) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, MA, p 655

    Google Scholar 

  • Holck AR, Meek CL (1991) Comparison of sampling techniques for adult mosquitoes and other Nematocera in open vegetation. J Ent Sci 26(2):231–236

    Google Scholar 

  • Horsfall WR (1956) Eggs of flood water mosquitoes. III. Conditioning and hatching of Aedes vexans. Ann Entomol Soc Am 49:66–71

    Article  Google Scholar 

  • Hunt RH (1973) A cytological technique for the study of Anopheles gambiae complex. Parasitology 15:137–139

    CAS  Google Scholar 

  • Hutchinson RA, West PA, Lindsay SW (2007) Suitability of two carbon dioxide-baited traps for mosquito surveillance in the United Kingdom. Bull Entomol Res 97(6):591–597

    Article  CAS  PubMed  Google Scholar 

  • Jackson BT, Paulson SL, Youngman RR, Scheffel SL, Hawkins B (2005) Oviposition preference of Culex restuans and Culex pipiens (Diptera: Culicidae) for selected infusions in oviposition traps and gravid traps. J Am Mosq Control Assoc 21(4):360–365

    Article  PubMed  Google Scholar 

  • Jakob WL, Brevier GA (1969a) Application of ovitraps in the US Aedes aegypti eradication program. Mosq News 29:55–62

    Google Scholar 

  • Jakob WL, Brevier GA (1969b) Evaluation of ovitraps in the US Aedes aegypti eradication program. Mosq News 29:650–653

    Google Scholar 

  • Jiang F, Jin Q, Liang L, Zhang AB, Li ZH (2014) Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp. Mol Ecol Resour 14:1114–1128

    Article  CAS  PubMed  Google Scholar 

  • Johnson BJ, Brosch D, Christiansen A, Wells E, Wells M, Bhandoola AF, Milne A, Garrison S, Fonseca DM (2018) Neighbors help neighbors control urban mosquitoes. Sci Rep 8:15797. https://doi.org/10.1038/s41598-018-34161

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanoja PC, Shetty PS, Geevargjese G (2003) A long-term study on vector abundance and seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh. Indian J Med Res 117:104–110

    Google Scholar 

  • Kent RJ, Norris DE (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 73(2):336–342

    Article  CAS  PubMed  Google Scholar 

  • Kline DL (1999) Comparison of two American biophysics mosquito traps: the professional and a new counterflow geometry trap. J Am Mosq Control Assoc 15(3):276–282

    CAS  PubMed  Google Scholar 

  • Kline DL (2002) Evaluation of various models of propane-powered mosquito traps. J Vector Ecol 27(1):1–7

    Article  PubMed  Google Scholar 

  • Klun JA, Debboun M (2000) A new module for quantitative evaluation of repellent efficacy using human subjects. J Med Entomol 37(1):177–181

    Article  CAS  PubMed  Google Scholar 

  • Kröckel U et al (2006) New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J Am Mosq Control Assoc 22(2):229–238

    Article  PubMed  Google Scholar 

  • Lee JH, Hassan H, Hill G, Cupp EW, Higazi TB, Mitchell CJ, Godsey MS, Unnasch TR (2002) Identification of mosquito avian derived blood meals by polymerase chain reaction heteroduplex assays. Am J Trop Med Hyg 66(5):599–604

    Article  CAS  PubMed  Google Scholar 

  • Lehane MJ (1991) Biology of blood-sucking insects. Harper Collins Academic, London, p 288

    Book  Google Scholar 

  • Leiser LB, Beier JC (1982) A comparison of oviposition traps and New Jersey light traps for Culex population surveillance. Mosq News 42:391–395

    Google Scholar 

  • Lemenager DC, Bauer SD, Kauffman EE (1986) Abundance and distribution of immature Culex tarsalis and Anopheles freeborni in rice fields of the Sulter-Yuba M A D:1. Initial sampling to detect major mosquito producing rice fields, augmented by adult light trapping. Proc Calif Mosq Vect Control Assoc 53:101–104

    Google Scholar 

  • Lin CP, Danforth BN (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol 30:686–702

    Article  CAS  PubMed  Google Scholar 

  • Lühken R, Pfitzner WP, Börstler J, Garms R, Huber K, Schork N, Steinke S, Kiel E, Becker N, Tannich E, Krüger A (2014) Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors 7:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo YP (2014) A novel multiple membrane blood-feeding system for investigating and maintaining Aedes aegypti and Aedes albopictus mosquitoes. J Vector Ecol 39(2):271–277

    Article  PubMed  Google Scholar 

  • Maciel-de-Freitas R, Eiras AE, Lourenco-de-Oliveira R (2006) Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101(3):321–325

    Article  PubMed  Google Scholar 

  • Magbity EB, Marbiah NT, Maude G, Curtis CF, Bradley DJ, Greenwood BM, Petersen E, Lines JD (1997) Effect of community-wide use of lambdacyhalothrin-impregnated bed nets on malaria vectors in rural Sierra Leone. Med Vet Entomol 11(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(Suppl 1):11

    Article  CAS  Google Scholar 

  • Mboera LEG, Takken W, Mdira KY, Chuwa GJ, Pickett JA (2000) Oviposition and behavioral responses of Culex quinquefasciatus to skatole and synthetic oviposition pheromone in Tanzania. J Chem Ecol 26(5):1193–1203

    Article  CAS  Google Scholar 

  • McIver SB (1982) Sensilla of mosquitoes (Diptera:Culicidae). J Med Entomol 19:489–535

    Article  CAS  PubMed  Google Scholar 

  • Meeraus WH, Armistead JS, Arias JR (2008) Field comparison of novel and gold standard traps for collecting Aedes albopictus in Northern Virginia. J Am Mosq Control Assoc 24(2):244–248

    Article  PubMed  Google Scholar 

  • Mogi M (1978) Population studies on mosquitoes in the rice field area of Nagasaki, Japan, especially on Culex tritaeniorhynchus. Trop Med 20:173–263

    Google Scholar 

  • Mogi M, Choochote W, Khambooruang C, Suwanpanit P (1990) Applicability of presence-absence and sequential sampling for ovitrap surveillance of Aedes (Diptera: Culicidae) in Chiang Mai, northern Thailand. J Med Entomol 27:509–514

    Article  CAS  PubMed  Google Scholar 

  • Muir L, Kay B (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in Northern Australia. Am J Trop Med Hyg 58(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Ngo KA, Kramer LD (2003) Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40:215–222

    Article  CAS  PubMed  Google Scholar 

  • Niebylski ML, Meek CL (1989) A self-marking device for emergent adult mosquitoes. J Am Mosq Control Assoc 5(1):86–90

    CAS  PubMed  Google Scholar 

  • O’Meara GF, Vose FE, Carlson DB (1989) Environmental factors influencing oviposition by Culex (Culex) (Diptera:Culicidae) in two types of traps. J Med Entomol 26:528–534

    Article  PubMed  Google Scholar 

  • Odiere M, Bayoh MN, Gimnig J, Vulule J, Irungu L, Walker E (2007) Sampling outdoor, resting Anopheles gambiae and other Mosquitoes (Diptera: Culicidae) in Western Kenya with Clay Pots. J Med Entomol 44(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Pagès F et al (2009) Aedes albopictus mosquito: the main vector of the 2007 chikungunya outbreak in Gabon. PLoS One 4(3):e4691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paing M, Naing TT (1988) Marking of mosquito larvae for mark-release-recapture studies on adults. J Commun Dis 20(4):276–279

    CAS  PubMed  Google Scholar 

  • Papierok B, Croset H, Rioux JA (1975) Estimation de l’effectif des populations larvaires d’ Aedes (O.) cataphylla Dyar 1916 (Diptera, Culicidae), II, Methode utilisant le’coup de louche’ ou ‘dipping’. Cah ORSTOM, ser Ent Med parasitolo 13:47–51

    Google Scholar 

  • Patel EK, Gupta A, Oswal RJ (2012) A review on: mosquito repellent methods. Int J Pharm Chem Biol Sci 2:310–317

    CAS  Google Scholar 

  • Perich MJ, Tidwell MA, Williams DC, Sardelis MR, Pena CJ, Mandeville D, Boobar LR (1990) Comparison of ground and aerial ultra-low-volume applications of malathion against Aedes aegypti in Santa Domingo, Dominican Republic. J Am Mosq Control Assoc 6(1):1–6

    CAS  PubMed  Google Scholar 

  • Perich MJ, Sherman C, Burge R, Gill E, Quintana M, Wirtz RA (2001) Evaluation of the efficacy of lambda-cyhalothrin applied as ultra-low volume and thermal fog for emergency control of Aedes aegypti in Honduras. J Am Mosq Control Assoc 17(4):221–224

    CAS  PubMed  Google Scholar 

  • Peters TM, Chevone BJ (1968) Marking Culex pipiens Linn. Larvae with vital dyes for larval ecological studies. Mosq News 28:24–28

    Google Scholar 

  • Petrić D, Zgomba M, Ludwig M, Becker N (1995) Dependence of CO2 baited trap captures on temperature variations. J Am Mosq Control Assoc 11(1):6–10

    PubMed  Google Scholar 

  • Petrić D, Zgomba M, Bellini R, Veronesi R, Kaiser A, Becker N (1999) Validation of CO2 trap data in three European regions. Proceedings of the 3rd International Conference Insect Pests in the Urban Environment, Prague, Czech Republic, pp 437–445

    Google Scholar 

  • Posteraro B, De Carolis E, Vella A, Sanguinetti M (2013) MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 10:151–164

    Article  CAS  PubMed  Google Scholar 

  • Pratt HD, Jakob WL (1967) Oviposition trap reference handbook. Aedes aegypti handbook series No. 6. National Communicable Disease Centre, p 33

    Google Scholar 

  • Proft J, Maier W, Kampen H (1999) Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Parasitol Res 85(10):837–843

    Article  CAS  PubMed  Google Scholar 

  • Puggioli A, Balestrino F, Damiens D, Lees RS, Soliban SM, Madakacherry O, Dindo ML, Bellini R, Gilles JR (2013) Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J Med Entomol 50(4):819–825

    Article  PubMed  Google Scholar 

  • Puslednik L, Russell RC, Ballard JWO (2012) Phylogeography of the medically important mosquito Aedes (Ochlerotatus) vigilax (Diptera: Culicidae) in Australasia. J Biogeogr 39:1333–1346

    Article  Google Scholar 

  • Rai KS (1963) A comparative study of mosquito karyotypes. Ann Entomol Soc Am 56:160–170

    Article  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the Barcode of Life Data System. Mol Ecol Notes 7:355–364. http://www.barcodinglife.org

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert JF, Harbach RE (2005a) Generic changes affecting European aedine mosquitoes (Diptera: Culicidae: Aedini) with a checklist of species. Eur Mosq Bull 19:1–4

    Google Scholar 

  • Reinert JF, Harbach RE (2005b) Generic and subgeneric status of Aedine mosquito species (Diptera: Culicidae: Aedini) occurring in the Australasian region. Zootaxa 887:1–10

    Article  Google Scholar 

  • Reinert JF, Harbach RE, Kitching IJ (2009) Phylogeny and classification of tribe Aedini (Diptera: Culicidae). Zool J Linnean Soc 157:700–794

    Article  Google Scholar 

  • Reiter P (1983) A portable, battery-powered trap for collecting gravid Culex mosquitoes. Mosq News 43:496–498

    Google Scholar 

  • Reiter P (1986) A standardized procedure for the quantitative surveillance of certain Culex mosquitoes by egg raft collection. J Am Mosq Control Assoc 2:219–221

    CAS  PubMed  Google Scholar 

  • Reiter P, Nathan MB (2001) Guidelines for assessing the efficacy of insecticidal space sprays for control of the dengue vector, Aedes aegypti. Bull World Health Organ 2001:1–40

    Google Scholar 

  • Revay EE, Junnila A, Xue RD, Kline DL, Bernier UR, Kravchenko VD, Qualls WA, Ghattas N, Müller GC (2013) Evaluation of commercial products for personal protection against mosquitoes. Acta Trop 125:226–230

    Article  CAS  PubMed  Google Scholar 

  • Ritchie SA, Buhagiar TS, Townsend M, Hoffman A, Van den Hurk AF, McMahon JL, Eiras AE (2014) Field evaluation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae). J Med Entomol 51(1):210–219

    Article  PubMed  Google Scholar 

  • Rodriguez SD, Drake LL, Price DP, Hammond JI, Hansen IA (2015) The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae). J Insect Sci 15:140. https://doi.org/10.1093/jisesa/iev125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez SD, Chung HN, Gonzales KK et al (2017) Efficacy of some wearable devices compared with spray-on insect repellents for the yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae). J Insect Sci 17(1):24. https://doi.org/10.1093/jisesa/iew117

    Article  PubMed Central  Google Scholar 

  • Rohe DL, Fall RP (1979) A miniature battery powered CO2 baited light trap for mosquito borne encephalitis surveillance. Bull Soc Vector Ecol 4:24–27

    Google Scholar 

  • Russel RC, Webb CE, Willimas CR, Ritchie SA (2005) Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med Vet Entomol 19:451–457

    Article  Google Scholar 

  • Russell RC (1987) The mosquito fauna of Conjola State Forest on the south coast of New South Wales. Part 2. Female feeding behaviour and flight activity. Gen Appl Ent 19:17–24

    Google Scholar 

  • Rutledge LC, Ward RA, Gould DJ (1964) Studies on the feeding response or mosquitoes to nutritive solutions in a new membrane feeder. Mosq News 24:407–419

    Google Scholar 

  • Savage KE, Lowe RE, Bailey DL, Dame DA (1980) Mass rearing of Anopheles albimanus. J Am Mosq Control Assoc 2:185–190

    Google Scholar 

  • Schaffner F, Bellini R, Petrić D, Scholte E-J, Zeller H, Marrama Rakotoarivony L (2013) Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasit Vectors 6:209–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott JJ, Crans SC, Crans WJ (2001) Use of an infusion-based gravid trap to collect adult Ochlerotatus japonicus. J Am Mosq Control Assoc 17(2):142–143

    CAS  PubMed  Google Scholar 

  • Service MW (1993) Mosquito ecology: field sampling methods, 2nd edn. Elsevier Science, Essex, p 988

    Book  Google Scholar 

  • Sharakhov IV, Sharakhova MV (2008) Cytogenetic and physical mapping of mosquito genomes. In: Verrity JF, Abbington LE (eds) Chromosome mapping research development. Nova Science Publishers, New York, pp 35–76

    Google Scholar 

  • Sharakhov IV, Sharakhova MV, Mbogo CM, Lizette L, Koekemoer LL, Yan G (2001) Linear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus. Genetics 159:211–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharakhova M, George P, Timoshevskiy V, Sharma A, Peery A et al (2015) Mosquitoes (Diptera). In: Sharakhov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 93–170

    Google Scholar 

  • Sharma VP, Patterson RS, LaBrecque GC, Singh KRP (1976) Three field release trials with chemosterilized Culex pipiens fatigans Wied in a Delhi village. J Commun Disord 8:18–27

    Google Scholar 

  • Sharpington PJ, Healy TP, Copland MJW (2000) A wind tunnel assay for screening mosquito repellents. J Am Mosq Control Assoc 16(3):234–240

    CAS  PubMed  Google Scholar 

  • Silver JB, Service MW (2008) Mosquito ecology: field sampling methods. Springer

    Google Scholar 

  • Skovmand O, Becker N (2000) Bioassays of Bacillus thuringiensis subsp. israelensis. In: Navon A, Ascher K (eds) Bioassays of entomopathogenic microbes and nematodes. CABI Publishing, New York, pp 41–47

    Google Scholar 

  • Smith JL, Fonseca DM (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: culicidae). Am J Trop Med Hyg 70:339–345

    Article  CAS  PubMed  Google Scholar 

  • Snetselaar J, Andriessen R, Suer RA, Osinga AJ, Knols BGJ, Farenhorst M (2014) Development and evaluation of a novel contamination device that targets multiple life stages of Aedes aegypti. Parasit Vectors 7:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Snow KR (1990) Mosquitoes. Naturalists’ Handbooks 14. Richmond Publishing, Slough, p 66

    Google Scholar 

  • Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Insect Sci Appl 12:287–295

    Google Scholar 

  • Takken W, Kline DL (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc 5:311–316

    CAS  PubMed  Google Scholar 

  • Thaggard CW, Eliason DA (1969) Field evaluation of components for an Aedes aegypti (L) oviposition trap. Mosq News 29:608–612

    Google Scholar 

  • Tietze NS, Stephenson MF, Sidhorn NT, Binding PL (2003) Mark-recapture of Culex erythrothorax in Santa Cruz County, California. J Am Mosq Control Assoc 19(2):134–138

    PubMed  Google Scholar 

  • Timmermann U, Becker N (2017) Impact of routine Bacillus thuringiensis israelensis (Bti) treatment on the availability of flying insects as prey for aerial feeding predators. Bull Entomol Res. https://doi.org/10.1017/S007485317000141

  • Torr SJ, Della Torre A, Calzetta della M, Costantini C, Vale GA (2008) Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus. Med Vet Ent 22(2):93–108

    Article  CAS  Google Scholar 

  • Tsai TF, Smith GC, Happ CM, Kork LJ, Jakob WL, Bolin RA, Francy DB, Lampert KJ (1989) Surveillance of St Louis encephalitis virus vectors in Grand Junction, Colorado in 1987. J Am Mosq Control Assoc 5(2):161–165

    CAS  PubMed  Google Scholar 

  • Tsurukawa C, Kawada H (2014) Experiment on mosquito blood feeding using the artificial feeding device. Med Entomol Zool 65(3):151–155

    Article  Google Scholar 

  • Unger MF, Sharakhova MV, Harshbarger AJ, Glass P, Collins FH (2015) A standard cytogenetic map of Culex quinquefasciatus polytene chromosomes in application for fine-scale physical mapping. Parasit Vectors 8:307. https://doi.org/10.1186/s13071-015-0912-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhulst N, Loonen J, Takken W (2013) Advances in methods for colour marking of mosquitoes. Parasit Vectors 6. https://doi.org/10.1186/1756-3305-6-200

  • Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D et al (2015) Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour 15:449–457

    Article  CAS  PubMed  Google Scholar 

  • Weitzel T, Collado C, Jöst A, Pietsch K, Storch V, Becker N (2009) Genetic differentiation of populations within the Culex pipiens complex and phylogeny of related species. J Am Mosq Control Assoc 25(1):6–17

    Article  CAS  PubMed  Google Scholar 

  • WHO (1975) Manual on practical Entomology in malaria, Part II: Methods and techniques, vol 13. World Health Organization, Geneva, p 191

    Google Scholar 

  • WHO (1996) Protocols for the laboratory and field evaluation of insecticides and repellents CTD/WHOPES/IC/96:1

    Google Scholar 

  • WHO (1998) Insecticide resistance monitoring WHO/CDS/CPC/MAL/98:12

    Google Scholar 

  • WHO (2001) Supplies for monitoring insecticide resistance in disease vectors WHO/CDS/CPE/PVC/2001:2

    Google Scholar 

  • WHO (2005a) Guidelines for laboratory and field testing of long-lasting insecticidal mosquito nets. WHO/CDS/WHOPES/GCDPP/2005.11

    Google Scholar 

  • WHO (2005b) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

    Google Scholar 

  • WHO (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets WHO/CDS/NTD/WHOPES/GCDPP/2006:3

    Google Scholar 

  • WHO (2013) Indoor residual spraying: an operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. World Health Organization, Geneva

    Google Scholar 

  • WHO (2016) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. apps.who.int

    Google Scholar 

  • Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC, Strickman DA (2015) Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One 10:e0133602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams CR et al (2006) Field efficacy of the BG-sentinel compared with CDC backpack aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22(2):296–300

    Article  PubMed  Google Scholar 

  • Williams CR, Johnson PH, Long SA, Rapley LP, Ritchie SA (2008) Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J Med Entomol 45(6):1173–1179

    Article  PubMed  Google Scholar 

  • Xue RD, Qualls WA, Smith ML, Gaines MK, Weaver JH, Debboun M (2012) Field evaluation of the Off! Clip-on Mosquito Repellent (metofluthrin) against Aedes albopictus and Aedes taeniorhynchus (Diptera: Culicidae) in northeastern Florida. J Med Entomol 49:652–655

    Article  CAS  PubMed  Google Scholar 

  • Yasuno M, Kazmi SJ, LaBrecque GC, Rajagopalan PK (1973) Seasonal change in larval habitats and population density of Culex fatigans in Delhi Villages, WHO/VBC/73, 429:12

    Google Scholar 

  • Zhimulev IF (1996) Morphology and structure of polytene chromosomes. Adv Genet 34:1–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becker, N. et al. (2020). Mosquito Research Techniques. In: Mosquitoes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-11623-1_4

Download citation

Publish with us

Policies and ethics