Skip to main content

Nanoscale Deformation Mechanisms in Collagen

  • Chapter
Collagen

Abstract

The mechanical properties of collagen Type I tissues are, like many biological connective tissues, crucially dependent on the hierarchical architecture at the nanometer and micron length scale. Triple helical collagen molecules aggregate into ordered fibrils of ∼ 100–200,nm diameter, which in turn can form parallel-fibered fiber bundles or lamellae at the micron level in tendon, bone and other tissues. To determine quantitatively the structural response of elements at each level in the structural hierarchy to applied mechanical stresses, in situ methods, which combine a high-resolution structural determination tool like x-ray scattering along with micromechanical testing, are a unique tool. These methods have recently provided a range of information and insights into the actual deformation processes occurring at the molecular, fibrillar and fiber bundle level in both unmineralized and mineralized collagen tissue types. In this chapter, we provide an overview of our current understanding of the nanoscale deformation processes in tendon, bone and related tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akiva U, Wagner H D and Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. Journal of Materials Science 33:1497–1509

    Article  Google Scholar 

  • Almer J D and Stock S R (2005) Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. Journal of Structural Biology 152:14–27

    Article  Google Scholar 

  • Bailey A J (2001) Molecular mechanisms of ageing in connective tissues. Mechanisms of Ageing and Development 122:735–755

    Article  Google Scholar 

  • Bailey A J, Wotton S F, Sims T J and Thompson P W (1992) Posttranslational modifications in the collagen of human osteoporotic femoral-head. Biochemical and Biophysical Research Communications 185:801–805

    Article  Google Scholar 

  • Banse X, Sims T J and Bailey A J (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. Journal of Bone & Mineral Research 17:1621–1628

    Article  Google Scholar 

  • Barbos M P, Bianco P, Ascenzi A and Boyde A (1984) Collagen orientation in compact-bone.2. distribution of lamellae in the whole of the human femoral-shaft with reference to its mechanical-properties. Metabolic Bone Disease & Related Research 5:309–315

    Article  Google Scholar 

  • Barenberg S A, Filisko F E and Geil P H (1978) Ultrastructural Deformation of Collagen. Connective Tissue Research 6:25–35

    Google Scholar 

  • Bernad M, Martinez M E, Escalona M, Gonzalez M L, Gonzalez C, Garces M V, Del Campo M T, Martin Mola E, Madero R and Carreno L (2002) Polymorphism in the type I collagen (COLIA1) gene and risk of fractures in postmenopausal women. Bone 30:223–228

    Article  Google Scholar 

  • Borsato K S and Sasaki N (1997) Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques. Journal of Biomechanics 30:955–957

    Article  Google Scholar 

  • Cribb A M and Scott J E (1995) Tendon response to tensile-stress - an ultrastructural investigation of collagen – proteoglycan interactions in stressed tendon. Journal of Anatomy 187:423–428

    Google Scholar 

  • Dale W C and Baer E (1974) Fiber-buckling in composite systems – model for ultrastructure of uncalcified collagen tissues. Journal of Materials Science 9:369–382

    Article  Google Scholar 

  • Fantner G, Hassenkam T, Kindt J H, Weaver J C, Birkedal H, Pechenik L, Cutroni J A, Cidade G A G, Stucky G D, Morse D E and Hansma P K (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials 4:612–616

    Article  Google Scholar 

  • Fantner G E, Oroudjev E, Schitter G, Golde L S, Thurner P, Finch M M, Turner P, Gutsmann T, Morse D E, Hansma H and Hansma P K (2006) Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials. Biophysical Journal 90:1411–1418

    Article  Google Scholar 

  • Folkhard W, Geercken W, Knorzer E, Mosler E, Nemetschekgansler H, Nemetschek T and Koch M H J (1987a) Structural dynamic of native tendon collagen. Journal of Molecular Biology 193:405–407

    Article  Google Scholar 

  • Folkhard W, Mosler E, Geercken W, Knorzer E, Nemetschekgansler H, Nemetschek T and Koch M H J (1987b) Quantitative-analysis of the molecular sliding mechanism in native tendoncollagen – time-resolved dynamic studies using synchrotron radiation. International Journal of Biological Macromolecules 9:169–175

    Article  Google Scholar 

  • Fratzl P, Burgert I and Gupta H S (2004a) On the role of interface polymers for the mechanics of natural polymeric composites. Physical Chemistry Chemical Physics 6:5575–5579

    Article  Google Scholar 

  • Fratzl P, Fratzl-Zelman N and Klaushofer K (1993) Collagen packing and mineralization – an x-ray-scattering investigation of turkey leg tendon. Biophysical Journal 64:260–266

    Google Scholar 

  • Fratzl P, Gupta H S, Paschalis E P and Roschger P (2004b) Structure and mechanical quality of the collagen-mineral nano-composite in bone. Journal of Materials Chemistry 14:2115–2123

    Article  Google Scholar 

  • Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H and Bernstorff S (1998) Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology 122:119–122

    Article  Google Scholar 

  • Giraudguille M M (1988) Twisted plywood architecture of collagen fibrils in human compact-bone osteons. Calcified Tissue International 42:167–180

    Article  Google Scholar 

  • Goldman H M, Bromage T G, Thomas C D L and Clement J G (2003) Preferred collagen fiber orientation iin the human mid-shaft femur. Anatomical Record Part a-Discoveries in Molecular Cellular and Evolutionary Biology 272A:434–445

    Article  Google Scholar 

  • Gupta H S, Fratzl P, Kerschnitzki M, Benecke G, Wagermaier W and Kirchner H O K (2007) Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. Journal of the Royal Society Interface 4:277–282

    Article  Google Scholar 

  • Gupta H S, Seto J, Wagermaier W, Zaslansky P, Boesecke P and Fratzl P (2006a) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America 103:17741–17746

    Article  Google Scholar 

  • Gupta H S, Stachewicz U, Wagermaier W, Roschger P, Wagner H D and Fratzl P (2006a) Mechanical modulation at the lamellar level in osteonal bone. Journal of Materials Research 21:1913–1921

    Article  Google Scholar 

  • Gupta H S, Wagermaier W, Zickler G A, Aroush D R B, Funari S S, Roschger P, Wagner H D and Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Letters 5:2108–2111

    Article  Google Scholar 

  • Hassenkam T, Fantner G E, Cutroni J A, Weaver J C, Morse D E and Hansma P K (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10

    Article  Google Scholar 

  • Hosemann R, Bonart R and Nemetschek T (1974) Inhomogeneous stretching process of collagen. Colloid and Polymer Science 252:912–919

    Article  Google Scholar 

  • Jager I and Fratzl P (2000) Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal 79:1737–1746

    Google Scholar 

  • Kastelic J, Galeski A and Baer E (1978) Multicomposite structure of tendon. Connective Tissue Research 6:11–23

    Article  Google Scholar 

  • Katz J L (1980) Anisotropy of Youngs modulus of bone. Nature 283:106–107

    Article  Google Scholar 

  • Knorzer E, Folkhard W, Geercken W, Boschert C, Koch M H J, Hilbert B, Krahl H, Mosler E, Nemetschekgansler H and Nemetschek T (1986) New aspects of the etiology of tendon-rupture – an analysis of time-resolved dynamic-mechanical measurements using synchrotron radiation. Archives of Orthopaedic and Trauma Surgery 105:113–120

    Article  Google Scholar 

  • Kowitz J, Knippel M, Schuhr T and Mach J (1997) Alteration in the extent of collagen I hydroxylation, isolated from femoral heads of women with a femoral neck fracture caused by osteoporosis. Calcified Tissue International 60:501–5

    Article  Google Scholar 

  • Landis W J (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–44

    Article  Google Scholar 

  • Landis W J, Hodgens K J, Arena J, Song M J and McEwen B F (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microscopy Research and Technique 33:192–202

    Article  Google Scholar 

  • Landis W J, Hodgens K J, Song M J, Arena J, Kiyonaga S, Marko M, Owen C and McEwen B F (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24

    Article  Google Scholar 

  • Landis W J, Song M J, Leith A, Mcewen L and Mcewen B F (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. Journal of Structural Biology 110:39–54

    Article  Google Scholar 

  • Langdahl B L, Ralston S H, Grant S F and Eriksen E F (1998) An Sp1 binding site polymorphism in the COLIA1 gene predicts osteoporotic fractures in both men and women. Journal of Bone & Mineral Research 13:1384–1389

    Article  Google Scholar 

  • Li L P, Buschmann M D and Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. Journal of Biomechanics 33:1533–1541

    Article  Google Scholar 

  • Li L P, Soulhat J, Buschmann M D and Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clinical Biomechanics 14:673–682

    Article  Google Scholar 

  • Mann V, Hobson E E, Li B, Stewart T L, Grant S F, Robins S P, Aspden R M and Ralston S H (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. Journal of Clinical Investigation 107:899–907

    Article  Google Scholar 

  • Mccutchen C W (1975) Do Mineral Crystals Stiffen Bone by Straitjacketing Its Collagen. Journal of Theoretical Biology 51:51–58

    Article  Google Scholar 

  • Misof K, Landis W J, Klaushofer K and Fratzl P (1997a) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. Journal of Clinical Investigation 100:40–45

    Article  Google Scholar 

  • Misof K, Rapp G and Fratzl P (1997b) A new molecular model for collagen elasticity based on synchrotron x-ray scattering evidence. Biophysical Journal 72:1376–1381

    Google Scholar 

  • Mosler E, Folkhard W, Knorzer E, Nemetschekgansler H, Koch M H J and Nemetschek T (1985a) Localization of stress-induced molecular-rearrangements in collagen. Colloid and Polymer Science 263:87–88

    Article  Google Scholar 

  • Mosler E, Folkhard W, Knorzer E, Nemetschekgansler H, Nemetschek T and Koch M H J (1985b) Stress-induced molecular rearrangement in tendon collagen. Journal of Molecular Biology 182:589–596

    Article  Google Scholar 

  • Nalla R K, Kinney J H and Ritchie R O (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials 2:164–168

    Article  Google Scholar 

  • Orgel J P R O, Irving T C, Miller A and Wess T J (2006) Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences of the United States of America 103:9001–9005

    Article  Google Scholar 

  • Oxlund H, Barckman M, Ortoft G and Andreassen T T (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S-371S

    Google Scholar 

  • Purslow P P, Wess T J and Hukins D W L (1998) Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. Journal of Experimental Biology 201:135–142

    Google Scholar 

  • Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P and Fratzl P (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357:191–197

    Article  Google Scholar 

  • Raspanti M, Alessandrini A, Ottani V and Ruggeri A (1997) Direct visualization of collagen-bound proteoglycans by tapping-mode atomic force microscopy. Journal of Structural Biology 119:118–122

    Article  Google Scholar 

  • Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S and Montevecchi F M (2003) Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons – a computational study from molecular to microstructural level. Journal of Biomechanics 36:1555–1569

    Article  Google Scholar 

  • Reilly D T and Burstein A H (1975) The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics 8:393–405

    Article  Google Scholar 

  • Ruys A J, Wei M, Sorrell C C, Dickson M R, Brandwood A and Milthorpe B K (1995) Sintering effects on the strength of hydroxyapatite. Biomaterials 16:409–415

    Article  Google Scholar 

  • Sasaki N and Odajima S (1996a) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics 29:1131–1136

    Article  Google Scholar 

  • Sasaki N and Odajima S (1996b) Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics 29:655–658

    Article  Google Scholar 

  • Scott J E (1991) Proteoglycan – Collagen interactions in connective tissues – ultrastructural, biochemical, functional and evolutionary aspects. International Journal of Biological Macromolecules 13:157–161

    Article  Google Scholar 

  • Scott J E (1992) Supramolecular organization of extracellular-matrix glycosaminoglycans, invitro and in the tissues. FASEB Journal 6:2639–2645

    Google Scholar 

  • Scott J E (2003) Elasticity in extracellular matrix ’shape modules’ of tendon, cartilage, etc. A sliding proteoglycan-filament model. Journal of Physiology-London 553:335–343

    Article  Google Scholar 

  • Screen H R C, Bader D L, Lee D A and Shelton J C (2004a) Local strain measurement within tendon. Strain 40:157–163

    Article  Google Scholar 

  • Screen H R C, Chhaya V H, Greenwald S E, Bader D L, Lee D A and Shelton J C (2006) The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomaterialia 2:505–513

    Article  Google Scholar 

  • Screen H R C, Lee D A, Bader D L and Shelton J C (2003) Development of a technique to determine strains in tendons using the cell nuclei. Biorheology 40:361–368

    Google Scholar 

  • Screen H R C, Lee D A, Bader D L and Shelton J C (2004a) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 218:109–119

    Article  Google Scholar 

  • Screen H R C, Shelton J C, Bader D L and Lee D A (2005a) Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Biochemical and Biophysical Research Communications 336:424–429

    Article  Google Scholar 

  • Screen H R C, Shelton J C, Bader D L and Lee D A (2005b) Cyclic tensile strain upregulates collagen production in isolated tendon fascicles. International Journal of Experimental Pathology 86:A8-a9

    Google Scholar 

  • Screen H R C, Shelton J C, Chhaya V H, Kayser M V, Bader D L and Lee D A (2005c) The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Annals of Biomedical Engineering 33:1090–1099

    Article  Google Scholar 

  • Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E and Hansma P K (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763

    Article  Google Scholar 

  • Spotila L D, Constantinou C D, Sereda L, Ganguly A, Riggs B L and Prockop D J (1991) Mutation in a Gene for Type-I procollagen (Col1a2) in a woman with postmenopausal osteoporosis – evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta. Proceedings of the National Academy of Sciences of the United States of America 88:5423–5427

    Article  Google Scholar 

  • Tai K, Ulm F J and Ortiz C (2006) Nanogranular origins of the strength of bone. Nano Letters 6:2520–2525

    Article  Google Scholar 

  • Wagermaier W, Gupta H S, Gourrier A, Burghammer M, Roschger P and Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5

    Article  Google Scholar 

  • Wainwright S A, Biggs W D, Currey J D and Gosline J M (1982) Mechanical design in organisms. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Wang X, Shen X, Li X and Agrawal C M (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  Google Scholar 

  • Weiner S, Traub W and Wagner H D (1999) Lamellar bone: Structure-function relations. Journal of Structural Biology 126:241–255

    Article  Google Scholar 

  • Weiner S and Wagner H D (1998) The material bone: Structure mechanical function relations. Annual Review of Materials Science 28:271–298

    Article  Google Scholar 

  • Wess T J, Hammersley A P, Wess L and Miller A (1998) A consensus model for molecular packing of type I collagen. Journal of Structural Biology 122:92–100

    Article  Google Scholar 

  • Yanagishita M (1993) Function of proteoglycans in the extracellular-matrix. Acta Pathologica Japonica 43:283–293

    Google Scholar 

  • Zioupos P, Currey J D and Hamer A J (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. Journal of Biomedical Materials Research 45:108–116

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, H. (2008). Nanoscale Deformation Mechanisms in Collagen. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics