Skip to main content

Collagen Diversity, Synthesis and Assembly

  • Chapter
Collagen

Abstract

The vertebrate collagen superfamily now includes over 50 collagens and collagen-like proteins. Here, their different structures are described, as well as their diverse forms of supramolecular assembly. Also presented here are the various steps in collagen biosynthesis, both intracellular and extracellular, and the functions of the collagen-specific post-translational modifications. Assembly of collagen fibrils, both in vitro and in vivo, is reviewed, including the mechanisms that control this process and the interactions involved. Finally, recent developments in the supramolecular assembly of collagen-like peptides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldock C, Sherratt MJ, Shuttleworth CA, Kielty CM (2003) The supramolecular organization of collagen VI microfibrils. J Mol Biol 330: 297–307.

    Article  Google Scholar 

  • Barik S (2006) Immunophilins: for the love of proteins. Cell Mol Life Sci 63: 2889–2900.

    Article  Google Scholar 

  • Beck K, Brodsky B (1998) Supercoiled protein motifs: The collagen triple-helix and the alpha-helical coiled coil. J Struct Biol 122: 17–29.

    Article  Google Scholar 

  • Birk DE, Bruckner P (2005) Collagen superstuctures. Top Curr Chem 247: 185–205.

    Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: Collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103: 231–240.

    Article  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95 ( Pt 4): 649–657.

    Google Scholar 

  • Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: Fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202: 229–243.

    Google Scholar 

  • Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci U S A 86: 4549–4553.

    Article  Google Scholar 

  • Blaschke UK, Eikenberry EF, Hulmes DJS, Galla HJ, Bruckner P (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275: 10370–10378.

    Article  Google Scholar 

  • Bonfanti L, Mironov AA, Jr., MartÆnez-Mençrguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of Cisternae: Evidence for cisternal maturation. Cell 95: 993–1003.

    Article  Google Scholar 

  • Borel A, Eichenberger D, Farjanel J, Kessler E, Gleyzal C, Hulmes DJS, Sommer P, Font B (2001) Lysyl oxidase-like protein from bovine aorta. Isolation and maturation to an active form by bone morphogenetic protein-1. J Biol Chem 276: 48944–48949.

    Article  Google Scholar 

  • Bottomley MJ, Batten MR, Lumb RA, Bulleid NJ (2001) Quality control in the endoplasmic reticulum. PDI mediates the ER retention of unassembled procollagen C-propeptides. Curr Biol 11: 1114–1118.

    Article  Google Scholar 

  • Brittingham R, Uitto J, Fertala A (2006) High-affinity binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem Biophys Res Commun 343: 692–699.

    Google Scholar 

  • Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70: 301–339.

    Google Scholar 

  • Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39: 359–365.

    Article  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118: 1341–1353.

    Article  Google Scholar 

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165: 553–563.

    Article  Google Scholar 

  • Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141: 1277–1286.

    Article  Google Scholar 

  • Chiquet M, Renedo AS, Huber F, Fluck M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22: 73–80.

    Article  Google Scholar 

  • Colige A, Beschin A, Samyn B, Goebels Y, van Beeumen J, Nusgens BV, Lapiere CM (1995) Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J Biol Chem 270: 16724–16730.

    Article  Google Scholar 

  • Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136: 729–743.

    Article  Google Scholar 

  • Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep 6: 28–32.

    Article  Google Scholar 

  • Eyre DR, Pietka T, Weis MA, Wu JJ (2004) Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J Biol Chem 279: 2568–2574.

    Article  Google Scholar 

  • Fields GB, Lauer JL, Dori Y, Forns P, Yu YC, Tirrell M (1998) Protein-like molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47: 143–151.

    Article  Google Scholar 

  • Fleischmajer R, MacDonald ED, Perlish JS, Burgeson RE, Fisher LW (1990) Dermal collagen fibrils are hybrids of type I and type III collagen molecules. J Struct Biol 105: 162–169.

    Article  Google Scholar 

  • Franzke CW, Bruckner P, Bruckner-Tuderman L (2005) Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 280: 4005–4008.

    Article  Google Scholar 

  • Fromme JC, Schekman R (2005) COPII-coated vesicles: flexible enough for large cargo? Curr Opin Cell Biol 17: 345–352.

    Article  Google Scholar 

  • Ge G, Seo NS, Liang X, Hopkins DR, Hook M, Greenspan DS (2004) Bone morphogenetic protein-1/tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis. J Biol Chem 279: 41626–41633.

    Article  Google Scholar 

  • Ghai R, Waters P, Roumenina LT, Gadjeva M, Kojouharova MS, Reid KB, Sim RB, Kishore U (2007) C1q and its growing family. Immunobiology 212: 253–266.

    Article  Google Scholar 

  • Giraud-Guille MM (1992) Liquid crystallinity in condensed type I collagen solutions. A clue to the packing of collagen in extracellular matrices. J Mol Biol 224: 861–873.

    Article  Google Scholar 

  • Giraud-Guille MM (1996) Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int Rev Cytol 166: 59–101.

    Google Scholar 

  • Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen–proteoglycan interaction. J Mol Biol 295: 891–902.

    Article  Google Scholar 

  • Grenard P, Bresson-Hadni S, El Alaoui S, Chevallier M, Vuitton DA, Ricard-Blum S (2001) Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis. J Hepatol 35: 367–375.

    Article  Google Scholar 

  • Halasz K, Kassner A, Morgelin M, Heinegard D (2007) COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem, 282: 31166–31173.

    Article  Google Scholar 

  • Holmes DF, Capaldi MJ, Chapman JA (1986) Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiating procedure. Int J Biol Macromol 8: 161–166.

    Google Scholar 

  • Holmes DF, Chapman JA, Prockop DJ, Kadler KE (1992) Growing tips of type-I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc Nat Acad Sci U S A 89: 9855–9859.

    Article  Google Scholar 

  • Holmes DF, Watson RB, Chapman JA, Kadler KE (1996) Enzymic control of collagen fibril shape. J Mol Biol 261: 93–97.

    Article  Google Scholar 

  • Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21: 547–578.

    Article  Google Scholar 

  • Hopkins DR, Keles S, Greenspan DS (2007) The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol, 26: 508–523.

    Article  Google Scholar 

  • Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348: 2543–2556.

    Article  Google Scholar 

  • Hulmes DJS (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137: 2–10.

    Article  Google Scholar 

  • Hulmes DJS, Bruns RR, Gross J (1983) On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci U S A 80: 388–392.

    Article  Google Scholar 

  • Hulmes DJS, Kadler KE, Mould AP, Hojima Y, Holmes DF, Cummings C, Chapman JA, Prockop DJ (1989) Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide. J Mol Biol 210: 337–345.

    Article  Google Scholar 

  • Iozzo RV (1999) The biology of the small leucine-rich proteoglycans – Functional network of interactive proteins. J Biol Chem 274: 18843–18846.

    Article  Google Scholar 

  • Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bachinger HP, Nagata K (2006) Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol Biol Cell 17: 2346–2355.

    Article  Google Scholar 

  • Kadler KE (1995) Extracellular matrix 1: fibril-forming collagens. Protein Profile 2: 491–619.

    Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316: 1–11.

    Google Scholar 

  • Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120: 1955–1958.

    Article  Google Scholar 

  • Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang YH, Brodsky B (2006) Self-association of collagen triple helix peptides into higher order structures. J Biol Chem 281: 33283–33290.

    Article  Google Scholar 

  • Knupp C, Squire JM (2005) Molecular packing in network-forming collagens. Adv Protein Chem 70: 375–403.

    Google Scholar 

  • Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L (2004) A novel marker of tissue junctions: collagen XXII. J Biol Chem 279: 22514–22521.

    Article  Google Scholar 

  • Koide T (2005) Triple helical collagen-like peptides: engineering and applications in matrix biology. Connect Tissue Res 46: 131–141.

    Article  Google Scholar 

  • Koide T, Nagata K (2005) Collagen biosynthesis. Top Curr Chem 247: 85–114.

    Google Scholar 

  • Koide T, Homma DL, Asada S, Kitagawa K (2005) Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 15: 5230–5233.

    Google Scholar 

  • Kotch FW, Raines RT (2006) Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci U S A 103: 3028–3033.

    Article  Google Scholar 

  • Kuhn K (1987) The classical collagens: types I, II and III. In Structure and Function of Collagen Types, Mayne R, Burgeson RE (eds) pp. 1–42. Academic Press: Orlando.

    Google Scholar 

  • Kvist AJ, Johnson AE, Morgelin M, Gustafsson E, Bengtsson E, Lindblom K, Aszodi A, Fassler R, Sasaki T, Timpl R, Aspberg A (2006) Chondroitin sulfate perlecan enhances collagen fibril formation. Implications for perlecan chondrodysplasias. J Biol Chem 281: 33127–33139.

    Article  Google Scholar 

  • Kwan APL, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114: 597–604.

    Article  Google Scholar 

  • Lees JF, Tasab M, Bulleid NJ (1997) Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16: 908–916.

    Article  Google Scholar 

  • Le Goff C, Somerville RP, Kesteloot F, Powell K, Birk DE, Colige AC, Apte SS (2006) Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133: 1587–1596.

    Article  Google Scholar 

  • Leighton M, Kadler KE (2003) Paired basic/Furin-like proprotein convertase cleavage of Pro-BMP-1 in the trans-Golgi network. J Biol Chem 278: 18478–18484.

    Article  Google Scholar 

  • Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci U S A 99: 1314–1318.

    Google Scholar 

  • Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F, Wardell BB, Lifferth GD, Teuscher C, Woodward SR, Taylor BA, Seegmiller RE, Olsen BR (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80: 423–430.

    Article  Google Scholar 

  • Li S, Van Den DC, D’Souza SJ, Chan BM, Pickering JG (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via alpha2beta1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163: 1045–1056.

    Google Scholar 

  • Linsenmayer TF, Fitch JM, Gordon MK, Cai CX, Igoe F, Marchant JK, Birk DE (1998) Development and roles of collagenous matrices in the embryonic avian cornea. Prog Retin Eye Res 17: 231–265.

    Article  Google Scholar 

  • Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94: 1852–1856.

    Article  Google Scholar 

  • Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63: 2304–2316.

    Article  Google Scholar 

  • MacBeath JR, Shackleton DR, Hulmes DJS (1993) Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. J Biol Chem 268: 19826–19832.

    Google Scholar 

  • Martin R, Farjanel J, Eichenberger D, Colige A, Kessler E, Hulmes DJS, Giraud-Guille MM (2000) Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture. J Mol Biol 301: 11–17.

    Article  Google Scholar 

  • Martin R, Waldmann L, Kaplan DL (2003) Supramolecular assembly of collagen triblock peptides. Biopolymers 70: 435–444.

    Article  Google Scholar 

  • McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DAD, Hulmes DJS (2003) α-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278: 42200–42207.

    Article  Google Scholar 

  • McEwan PA, Scott PG, Bishop PN, Bella J (2006) Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol 155: 294–305.

    Article  Google Scholar 

  • Minamitani T, Ikuta T, Saito Y, Takebe G, Sato M, Sawa H, Nishimura T, Nakamura F, Takahashi K, Ariga H, Matsumoto K (2004) Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 298: 305–315.

    Article  Google Scholar 

  • Mironov AA, Mironov AA, Jr., Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5: 583–594.

    Article  Google Scholar 

  • Moali C, Font B, Ruggiero F, Eichenberger D, Rousselle P, Francois V, Oldberg A, Bruckner-Tuderman L, Hulmes DJS (2005) Substrate-specific modulation of a multisubstrate proteinase. C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1. J Biol Chem 280: 24188–24194.

    Article  Google Scholar 

  • Molnar J, Fong KS, He QP, Hayashi K, Kim Y, Fong SF, Fogelgren B, Szauter KM, Mink M, Csiszar K (2003) Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta 1647: 220–224.

    Google Scholar 

  • Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127: 291–304.

    Article  Google Scholar 

  • Mould AP, Hulmes DJS, Holmes DF, Cummings C, Sear CH, Chapman JA (1990) D-periodic assemblies of type I procollagen. J Mol Biol 211: 581–594.

    Article  Google Scholar 

  • Myllyharju J (2005) Intracellular post-translational modifications of collagens. Top Curr Chem 247: 115–247.

    Google Scholar 

  • Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20: 33–43.

    Article  Google Scholar 

  • Myllyla R, Wang C, Heikkinen J, Juffer A, Lampela O, Risteli M, Ruotsalainen H, Salo A, Sipila L (2007) Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol 212: 323–329.

    Article  Google Scholar 

  • Neame PJ, Kay CJ, McQuillan DJ, Beales MP, Hassell JR (2000) Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci 57: 859–863.

    Article  Google Scholar 

  • Paramonov SE, Gauba V, Hartgerink JD (2005) Synthesis of collagen-like peptide polymers by native chemical ligation. Macromolecules 38: 7555–7561.

    Article  Google Scholar 

  • Parkinson J, Kadler KE, Brass A (1994) Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol 247: 823–831.

    Google Scholar 

  • Parry DA (2005) Structural and functional implications of sequence repeats in fibrous proteins. Adv Protein Chem 70: 11–35.

    Google Scholar 

  • Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24: 3446–3458.

    Google Scholar 

  • Plumb DA, Dhir V, Mironov A, Ferrara L, Poulsom R, Kadler KE, Thornton DJ, Briggs MD, Boot-Handford RP (2007) Collagen XXVII is developmentally regulated and forms thin fibrillar structures distinct from those of classical vertebrate fibrillar collagens. J Biol Chem 282: 12791–12795.

    Article  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386: 15–27.

    Article  Google Scholar 

  • Prockop DJ, Fertala A (1998) Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides – Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem 273: 15598–15604.

    Article  Google Scholar 

  • Rentz TJ, Poobalarahi F, Bornstein P, Sage EH, Bradshaw AD (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282: 22062–22071.

    Article  Google Scholar 

  • Ricard-Blum S, Dublet B, van der Rest M (2000) Unconventional Collagens. Oxford University Press: Oxford

    Google Scholar 

  • Ricard-Blum S, Ruggiero F, van der Rest M (2005) The collagen superfamily. Top Curr Chem 247: 35–84.

    Google Scholar 

  • Richardson SH, Starborg T, Lu Y, Humphries SM, Meadows RS, Kadler KE (2007) Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell–cell junctions. Mol Cell Biol 27: 6218–6228.

    Article  Google Scholar 

  • Romanic AM, Adachi E, Kadler KE, Hojima Y, Prockop DJ (1991) Copolymerization of pNcolagen III and collagen I. J Biol Chem 266: 12703–12709.

    Google Scholar 

  • Ruotsalainen H, Sipila L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, Fassler R, Myllyla R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 119: 625–635.

    Article  Google Scholar 

  • Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J (2004) Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc Natl Acad Sci U S A 101: 15633–15638.

    Article  Google Scholar 

  • Seidah NG, Prat A (2005) Proprotein convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38: 79–94.

    Google Scholar 

  • Snellman A, Tuomisto A, Koski A, Latvanlehto A, Pihlajaniemi T (2007) The role of disulfide bonds and alpha-helical coiled-coils in the biosynthesis of type XIII collagen and other collagenous transmembrane proteins. J Biol Chem 282: 14898–14905.

    Article  Google Scholar 

  • Speranza ML, Valentini G, Calligaro A (1987) Influence of fibronectin on the fibrillogenesis of type I and type III collagen. Coll Relat Res 7: 115–123.

    Google Scholar 

  • Stephan S, Sherratt MJ, Hodson N, Shuttleworth CA, Kielty CM (2004) Expression and supramolecular assembly of recombinant alpha1(viii) and alpha2(viii) collagen homotrimers. J Biol Chem 279: 21469–21477.

    Article  Google Scholar 

  • Sullivan MM, Barker TH, Funk SE, Karchin A, Seo NS, Hook M, Sanders J, Starcher B, Wight TN, Puolakkainen P, Sage EH (2006) Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem 281: 27621–27632.

    Article  Google Scholar 

  • Svensson L, Aszúdi A, Reinholt FP, Féssler R, Heinegard D, Oldberg A (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem 274: 9636–9647.

    Article  Google Scholar 

  • van der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C, Pruijs HE, Sillence DO, Brinckmann J, Abraham DJ, Black CM, Verzijl N, DeGroot J, Hanemaaijer R, TeKoppele JM, Huizinga TW, Bank RA (2003) Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 278: 40967–40972.

    Article  Google Scholar 

  • Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277: 37377–37381.

    Article  Google Scholar 

  • Verderio EA, Johnson TS, Griffin M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38: 89–114.

    Article  Google Scholar 

  • Walmsley AR, Batten MR, Lad U, Bulleid NJ (1999) Intracellular retention of procollagen within the endoplasmic reticulum is mediated by prolyl 4-hydroxylase. J Biol Chem 274: 14884–14892.

    Article  Google Scholar 

  • Wang WM, Lee S, Steiglitz BM, Scott IC, Lebares CC, Allen ML, Brenner MC, Takahara K, Greenspan DS (2003) Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-proteinase. J Biol Chem 278: 19549–19557.

    Article  Google Scholar 

  • Ward NP, Hulmes DJS, Chapman JA (1986) Collagen self-assembly in vitro: electron microscopy of initial aggregates formed during the lag phase. J Mol Biol 190: 107–112.

    Article  Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279: 53331–53337.

    Article  Google Scholar 

  • Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW, Chervoneva I, Birk DE (2006) Murine model of the Ehlers–Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281: 12888–12895.

    Article  Google Scholar 

  • Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation: optimal in vitro conditions and preliminary kinetic results. J Biol Chem 235: 6578–6585.

    Google Scholar 

  • Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20: 78–82.

    Article  Google Scholar 

  • Yeowell HN, Walker LC (2000) Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol Genet Metab 71: 212–224.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hulmes, D. (2008). Collagen Diversity, Synthesis and Assembly. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics