Skip to main content

Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications

  • Chapter
Collagen

Abstract

Collagen gels provide an in-vivo-like, 3D environment suitable for studying cell–matrix interactions during proto-tissue formation. Cell-seeded collagen gels, reconstituted under a variety of conditions, are remodeled by cell-driven compaction and consolidation. The remodeled gel, or tissue equivalent (TE), possesses properties dependent on the organization of collagen fibrils in the network, which, in turn, is controlled by several environmental factors, particularly mechanical constraints on the gel boundaries. Mechanical tests performed under a variety of conditions suggest that many different physical processes are involved in the gel’s mechanical response. Network restructuring under nonuniform loading conditions leads to mechanical anisotropy and nonlinearity at large strain. Although similar in behavior, collagen-based TEs do not yet possess sufficient mechanical properties to replace native tissues. Efforts are underway to improve TE properties by controlling ECM composition and organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agoram, B. and V. H. Barocas. Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J. Biomech. Eng. 123:362–369, 2001.

    Google Scholar 

  • Ahlfors, J. E. and K. L. Billiar. Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix. Biomaterials 28:2183–2191, 2007.

    Google Scholar 

  • Alini, M., W. Li, P. Markovic, M. Aebi, R.C. Spiro, and P.J. Roughley. The potential and limitation of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28:446–54, 2003.

    Google Scholar 

  • Awad, H. A., D. L. Butler, M. T. Harris, R. E. Ibrahim, Y. Wu, R. G. Young, S. Kadiyala, and G. P. Boivin. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51:233–240, 2000.

    Google Scholar 

  • Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120: 660–666, 1998.

    Google Scholar 

  • Barocas, V. H., A. G. Moon, and R. T. Tranquillo. The fibroblast-populated collagen microsphere assay of cell traction force–Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170, 1995.

    Google Scholar 

  • Barocas, V. H. and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119:137–145, 1997a.

    Google Scholar 

  • Barocas, V. H. and R. T. Tranquillo. A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurement. J. Biomech. Eng. 119:261–268, 1997b.

    Google Scholar 

  • Bell, E., H. P. Ehrlich, D. J. Buttle, and T. Nakatsuji. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054, 1981a.

    Google Scholar 

  • Bell, E., H. P. Ehrlich, S. Sher, C. Merrill, R. Sarber, B. Hull, T. Nakatsuji, D. Church, and D. J. Buttle. Development and use of a living skin equivalent. Plast. Reconstr. Surg. 67:386–392, 1981b.

    Google Scholar 

  • Bell, E., B. Ivarsson, and C. Merrill. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76:1274–8., 1979.

    Google Scholar 

  • Bellows, C. G., A. H. Melcher, and J. E. Aubin. Association between tension and orientation of periodontal ligament fibroblasts and exogenous collagen fibres in collagen gels in vitro. J. Cell. Sci. 58:125–138, 1982.

    Google Scholar 

  • Bellows, C. G., A. H. Melcher, and J. E. Aubin. Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types. J. Cell. Sci. 50:299–314, 1981.

    Google Scholar 

  • Berglund, J. D., R. M. Nerem, and A. Sambanis. Viscoelastic testing methodologies for tissue engineered blood vessels. J. Biomech. Eng. 127:1176–1184, 2005.

    Google Scholar 

  • Berry, C. C., J. C. Shelton, D. L. Bader, and D. A. Lee. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 9:613–624, 2003.

    Google Scholar 

  • Billiar, K. L., A. M. Throm, and M. T. Frey. Biaxial failure properties of planar living tissue equivalents. J. Biomed. Mater. Res. A. 73:182–191, 2005.

    Google Scholar 

  • Breuls, R. G., B. G. Sengers, C. W. Oomens, C. V. Bouten, and F. P. Baaijens. Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J. Biomech. Eng. 124:198–207, 2002.

    Google Scholar 

  • Brown, R. A., R. Prajapati, D. A. McGrouther, I. V. Yannas, and M. Eastwood. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175:323–332, 1998.

    Google Scholar 

  • Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33:3–14., 2000.

    Google Scholar 

  • Burgess, M. L., W. E. Carver, L. Terracio, S. P. Wilson, M. A. Wilson, and T. K. Borg. Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ. Res. 74:291–298, 1994.

    Google Scholar 

  • Cacou, C., D. Palmer, D. A. Lee, D. L. Bader, and J. C. Shelton. A system for monitoring the response of uniaxial strain on cell seeded collagen gels. Med. Eng. Phys. 22: 327–333, 2000.

    Google Scholar 

  • Carver, W., I. Molano, T. A. Reaves, T. K. Borg, and L. Terracio. Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J. Cell. Physiol. 165:425–437, 1995.

    Google Scholar 

  • Chandran, P. L. and V. H. Barocas. Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129:1–11, 2007.

    Google Scholar 

  • Chandran, P. L. and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006.

    Google Scholar 

  • Chandran, P. L. and V. H. Barocas. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126: 152–166, 2004.

    Google Scholar 

  • Chen, G., T. Sato, T. Ushida, R. Hirochika, Y. Shirasaki, N. Ochiai, and T. Tateishi. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res 67A:1170–80, 2003.

    Google Scholar 

  • Chiquet, M., A. S. Renedo, F. Huber, and M. Fluck. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22:73–80, 2003.

    Google Scholar 

  • Christiansen, D. L., E. K. Huang, and F. H. Silver. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19: 409–420, 2000.

    Google Scholar 

  • Clark, R. A., L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J. Cell. Sci. 108 (Pt 3): 1251–1261, 1995.

    Google Scholar 

  • Cooke, M. E., T. Sakai, and D. F. Mosher. Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins. J. Cell. Sci. 113 (Pt 13):2375–2383, 2000.

    Google Scholar 

  • Costa, K. D., E. J. Lee, and J. W. Holmes. Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9:567–577, 2003.

    Google Scholar 

  • Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27: 3631–3638, 2006.

    Google Scholar 

  • Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25: 3699–3706, 2004.

    Google Scholar 

  • Delvoye, P., P. Wiliquet, J. L. Leveque, B. V. Nusgens, and C. M. Lapiere. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Invest. Dermatol. 97:898–902, 1991.

    Google Scholar 

  • Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.

    Google Scholar 

  • Eastwood, M., D. A. McGrouther, and R. A. Brown. A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: evidence for cell-matrix mechanical signalling. Biochim. Biophys. Acta 1201:186–192, 1994.

    Google Scholar 

  • Eastwood, M., R. Porter, U. Khan, G. McGrouther, and R. Brown. Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166:33–42, 1996.

    Google Scholar 

  • Ehrlich, H. P. and T. Rittenberg. Differences in the mechanism for high- versus moderate-density fibroblast-populated collagen lattice contraction. J. Cell. Physiol. 185:432–439, 2000.

    Google Scholar 

  • Engelmayr, G. C. Jr, G. D. Papworth, S. C. Watkins, J. E. Mayer Jr, and M. S. Sacks. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39:1819–1831, 2006.

    Google Scholar 

  • Evans, M.C. Extension of the anisotropic biphasic theory to large strain and high cell concentrations. Doctoral Thesis. University of Minnesota, Minneapolis, MN 2007.

    Google Scholar 

  • Eschenhagen, T., C. Fink, U. Remmers, H. Scholz, J. Wattchow, J. Weil, W. Zimmermann, H. H. Dohmen, H. Schafer, N. Bishopric, T. Wakatsuki, and E. L. Elson. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 11:683–694, 1997.

    Google Scholar 

  • Feng, Z., M. Yamato, T. Akutsu, T. Nakamura, T. Okano, and M. Umezu. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artif. Organs 27:84–91, 2003.

    Google Scholar 

  • Ferrenq, I., L. Tranqui, B. Vailhe, P. Y. Gumery, and P. Tracqui. Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta Biotheor. 45:267–293, 1997.

    Google Scholar 

  • Findley, W., J. Lai, and K. Onaran. Creep and Relaxation of Nonlinear Viscoelastic Materials. Amsterdam: North Holland Publishing, 1976.

    MATH  Google Scholar 

  • Fink, C., S. Ergun, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14:669–679, 2000.

    Google Scholar 

  • Fujiyama, C., Z. Masaki, and H. Sugihara. Reconstruction of the urinary bladder mucosa in three-dimensional collagen gel culture: fibroblast-extracellular matrix interactions on the differentiation of transitional epithelial cells. J. Urol. 153:2060–2067, 1995.

    Google Scholar 

  • Fung, Y. C. Biomechanics: Mechanical properties of living tissues. New York: Springer-Verlag, 1993, 568 pp.

    Google Scholar 

  • Galois, L., S. Hutasse, D. Cortial, C. F. Rousseau, L. Grossin, M. C. Ronziere, D. Herbage, and A. M. Freyria. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 27:79–90, 2006.

    Google Scholar 

  • Garvin, J., J. Qi, M. Maloney, and A. J. Banes. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9:967–979, 2003.

    Google Scholar 

  • Gentleman, E., G. A. Livesay, K. C. Dee, and E. A. Nauman. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann. Biomed. Eng. 34:726–736, 2006a.

    Google Scholar 

  • Gentleman, E., E. A. Nauman, G. A. Livesay, and K. C. Dee. Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng. 12:1639–1649, 2006b.

    Google Scholar 

  • Germain, L., F. A. Auger, E. Grandbois, R. Guignard, M. Giasson, H. Boisjoly, and S. L. Guerin. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67: 140–147, 1999.

    Google Scholar 

  • Girton, T. S., V. H. Barocas, and R. T. Tranquillo. Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124: 568–575, 2002.

    Google Scholar 

  • Girton, T. S., T. R. Oegema, E. D. Grassl, B. C. Isenberg, and R. T. Tranquillo. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng. 122:216–223, 2000.

    Google Scholar 

  • Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A. 66:550–561, 2003.

    Google Scholar 

  • Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60:607–612, 2002.

    Google Scholar 

  • Grinnell, F. and C. H. Ho. Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp. Cell Res. 273:248–255, 2002.

    Google Scholar 

  • Grinnell, F. and C. R. Lamke. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell. Sci. 66:51–63, 1984.

    Google Scholar 

  • Grinnell, F., M. Zhu, M. A. Carlson, and J. M. Abrams. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp. Cell Res. 248:608–619, 1999.

    Google Scholar 

  • Gruber, H. E., J. A. Ingram, K. Leslie, H. J. Norton, and E. N. Hanley Jr. Cell shape and gene expression in human intervertebral disc cells: in vitro tissue engineering studies. Biotech. Histochem. 78:109–117, 2003.

    Google Scholar 

  • Gruber, H. E., K. Leslie, J. Ingram, H. J. Norton, and E. N. Hanley. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J. 4:44–55, 2004.

    Google Scholar 

  • Guido, S. and R. T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J. Cell. Sci. 105 (Pt 2):317–331, 1993.

    Google Scholar 

  • Guidry, C. and F. Grinnell. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Coll. Relat. Res. 6:515–529, 1987a.

    Google Scholar 

  • Guidry, C. and F. Grinnell. Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts. J. Cell Biol. 104:1097–1103, 1987b.

    Google Scholar 

  • Guidry, C. and F. Grinnell. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell. Sci. 79:67–81, 1985.

    Google Scholar 

  • Guilak, F., D. L. Butler, S. A. Goldstein, and D. J. Mooney. Functional Tissue Engineering. New York: Springer-Verlag, 2003, 426 pp.

    Google Scholar 

  • Gullberg, D., A. Tingstrom, A. C. Thuresson, L. Olsson, L. Terracio, T. K. Borg, and K. Rubin. Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp. Cell Res. 186: 264–272, 1990.

    Google Scholar 

  • Harris, A. K., D. Stopak, and P. Wild. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251, 1981.

    Google Scholar 

  • Holmes, D.F., M.J. Capaldi, and J.A. Chapman. Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiating procedure. Int. J. Biol. Macromol 8: 161–166, 1986.

    Google Scholar 

  • Hsu, S., A. M. Jamieson, and J. Blackwell. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system. Biorheology 31:21–36, 1994.

    Google Scholar 

  • Huang, D., T. R. Chang, A. Aggarwal, R. C. Lee, and H. P. Ehrlich. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305, 1993.

    Google Scholar 

  • Isenberg, B. C. and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–949, 2003.

    Google Scholar 

  • Iwasa, J., M. Ochi, Y. Uchio, K. Katsube, N. Adachi, and K. Kawasaki. Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif. Organs 27:249–255, 2003.

    Google Scholar 

  • Jhun, C., M. C. Evans, V. H. Barocas, and R. T. Tranquillo. Fiber re-orientation in planar biaxial loading of bioartificial tissues possessing prescribed alignment. Ann. Biomed. Eng., submitted 2008.

    Google Scholar 

  • Juncosa-Melvin, N., G. P. Boivin, M. T. Galloway, C. Gooch, J. R. West, and D. L. Butler. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Eng. 12:681–689, 2006.

    Google Scholar 

  • Juncosa-Melvin, N., K. S. Matlin, R. W. Holdcraft, V. S. Nirmalanandhan, and D. L. Butler. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 13:1219–1226, 2007.

    Google Scholar 

  • Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. Collagen fibril formation. Biochem. J. 316 (Pt 1):1–11, 1996.

    Google Scholar 

  • Kanda, K. and T. Matsuda. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transplant. 3:481–492, 1994.

    Google Scholar 

  • Knapp, D. M., V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold, and R. T. Tranquillo. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41:971–993, 1997.

    Google Scholar 

  • Kolodney, M. S. and R. B. Wysolmerski. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82, 1992.

    Google Scholar 

  • Krishnan, L., J. A. Weiss, M. D. Wessman, and J. B. Hoying. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 10:241–252, 2004.

    Google Scholar 

  • Kuntz, R. M. and W. M. Saltzman. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72:1472–1480, 1997.

    Google Scholar 

  • Langelier, E., D. Rancourt, S. Bouchard, C. Lord, P. P. Stevens, L. Germain, and F. A. Auger. Cyclic traction machine for long-term culture of fibroblast-populated collagen gels. Ann. Biomed. Eng. 27:67–72, 1999.

    Google Scholar 

  • Lauer-Fields, J. L., D. Juska, and G. B. Fields. Matrix metalloproteinases and collagen catabolism. Biopolymers 66:19–32, 2002.

    Google Scholar 

  • Lee, C. H., A. Singla, and Y. Lee. Biomedical applications of collagen. Int. J. Pharm. 221:1–22, 2001.

    Google Scholar 

  • L’Heureux, N., L. Germain, R. Labbe, and F. A. Auger. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17:499–509, 1993.

    Google Scholar 

  • Lopez Valle, C. A., F. A. Auger, P. Rompre, V. Bouvard, and L. Germain. Peripheral anchorage of dermal equivalents. Br. J. Dermatol. 127:365–371, 1992.

    Google Scholar 

  • Marquez, J. P., G. M. Genin, G. I. Zahalak, and E. L. Elson. The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88:778–789, 2005.

    Google Scholar 

  • Mauch, C., B. Adelmann-Grill, A. Hatamochi, and T. Krieg. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 250: 301–305, 1989.

    Google Scholar 

  • Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056., 2002.

    Google Scholar 

  • Minami, Y., H. Sugihara, and S. Oono. Reconstruction of cornea in three-dimensional collagen gel matrix culture. Invest. Ophthalmol. Vis. Sci. 34:2316–2324, 1993.

    Google Scholar 

  • Mochitate, K., P. Pawelek, and F. Grinnell. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp. Cell Res. 193:198–207, 1991.

    Google Scholar 

  • Moon, A. G. and R. T. Tranquillo. Fibroblast-populated collagen microsphere assay of cell traction force: part 1. continuum model. AIChE J. 39:163–177, 1993.

    Google Scholar 

  • Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102: 73–84., 1980.

    Google Scholar 

  • Nakagawa, S., P. Pawelek, and F. Grinnell. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J. Invest. Dermatol. 93: 792–798, 1989.

    Google Scholar 

  • Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23: 3717–3731, 2002.

    Google Scholar 

  • Neidert, M. R. and R. T. Tranquillo. Tissue-engineered valves with commissural alignment. Tissue. Eng. 12:891–903, 2006.

    Google Scholar 

  • Newman, S., M. Cloitre, C. Allain, G. Forgacs, and D. Beysens. Viscosity and elasticity during collagen assembly in vitro: relevance to matrix-driven translocation. Biopolymers 41: 337–347, 1997.

    Google Scholar 

  • Nirmalanandhan, V. S., M. S. Levy, A. J. Huth, and D. L. Butler. Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng. 12:1865–1872, 2006.

    Google Scholar 

  • Noguchi, T., M. Oka, M. Fujino, M. Neo, and T. Yamamuro. Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin. Orthop: 251–258, 1994.

    Google Scholar 

  • Nusgens, B., C. Merrill, C. Lapiere, and E. Bell. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Coll. Relat. Res. 4:351–363, 1984.

    Google Scholar 

  • Ohsumi, T. K., J. E. Flaherty, M. C. Evans, and V. H. Barocas. Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomech. Model. Mechanobiol, 7: 53–62, 2007.

    Google Scholar 

  • Okano, T. and T. Matsuda. Hybrid muscular tissues: preparation of skeletal muscle cell-incorporated collagen gels. Cell Transplant. 6:109–118, 1997.

    Google Scholar 

  • Okano, T., S. Satoh, T. Oka, and T. Matsuda. Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43: M749–M753, 1997.

    Google Scholar 

  • Orban, J. M., L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul, and D. A. Vorp. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A. 68:756–762, 2004.

    Google Scholar 

  • Osborne, C. S., J. C. Barbenel, D. Smith, M. Savakis, and M. H. Grant. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med. Biol. Eng. Comput. 36:129–134, 1998.

    Google Scholar 

  • Ozerdem, B. and A. Tozeren. Physical response of collagen gels to tensile strain. J. Biomech. Eng. 117:397–401, 1995.

    Google Scholar 

  • Parekh, A. and D. Velegol. Collagen gel anisotropy measured by 2-D laser trap microrheometry. Ann. Biomed. Eng. 35:1231–1246, 2007.

    Google Scholar 

  • Parsons, J. W. and R. N. Coger. A new device for measuring the viscoelastic properties of hydrated matrix gels. J. Biomech. Eng. 124:145–154, 2002.

    Google Scholar 

  • Pedersen, J. A., F. Boschetti, and M. A. Swartz. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J. Biomech. 40:1484–1492, 2007.

    Google Scholar 

  • Pedersen, J. A. and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.

    Google Scholar 

  • Pizzo, A. M., K. Kokini, L. C. Vaughn, B. Z. Waisner, and S. L. Voytik-Harbin. Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J. Appl. Physiol. 98: 1909–1921, 2005.

    Google Scholar 

  • Prajapati, R. T., B. Chavally-Mis, D. Herbage, M. Eastwood, and R. A. Brown. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen. 8:226–237, 2000.

    Google Scholar 

  • Pryse, K. M., A. Nekouzadeh, G. M. Genin, E. L. Elson, and G. I. Zahalak. Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann. Biomed. Eng. 31:1287–1296, 2003.

    Google Scholar 

  • Raub, C. B., V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92:2212–2222, 2007.

    Google Scholar 

  • Redden, R. A. and E. J. Doolin. Collagen crosslinking and cell density have distinct effects on fibroblast-mediated contraction of collagen gels. Skin Res. Technol. 9:290–293, 2003.

    Google Scholar 

  • Roche, S., M. C. Ronziere, D. Herbage, and A. M. Freyria. Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 22:9–18., 2001.

    Google Scholar 

  • Roeder, B. A., K. Kokini, J. P. Robinson, and S. L. Voytik-Harbin. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J. Biomech. Eng. 126:699–708, 2004.

    Google Scholar 

  • Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.

    Google Scholar 

  • Rosenfeldt, H. and F. Grinnell. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J. Biol. Chem. 275:3088–3092, 2000.

    Google Scholar 

  • Rowe, S. L., S. Lee, and J. P. Stegemann. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 3: 59–67, 2007.

    Google Scholar 

  • Roy, P., W. M. Petroll, H. D. Cavanagh, C. J. Chuong, and J. V. Jester. An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp. Cell Res. 232:106–117, 1997.

    Google Scholar 

  • Ruberti, J. and N. Hallab. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336:483–489, 2005.

    Google Scholar 

  • Sawhney, R. K. and J. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol. 157:1083–1091, 2002.

    Google Scholar 

  • Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.

    Google Scholar 

  • Seliktar, D., R. M. Nerem, and Z. S. Galis. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 9:657–666, 2003.

    Google Scholar 

  • Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29:923–934, 2001.

    Google Scholar 

  • Sheu, M. T., J. C. Huang, G. C. Yeh, and H. O. Ho. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 22:1713–1719, 2001.

    Google Scholar 

  • Shi, Y., R. Iyer, A. Soundararajan, D. Dobkin, and I. Vesely. Collagen-based tissue engineering as applied to heart valves. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:4912–4915, 2005.

    Google Scholar 

  • Shi, Y., L. Rittman, and I. Vesely. Novel geometries for tissue-engineered tendonous collagen constructs. Tissue Eng. 12:2601–2609, 2006.

    Google Scholar 

  • Shi, Y. and I. Vesely. Fabrication of mitral valve chordae by directed collagen gel shrinkage. Tissue Eng. 9:1233–1242, 2003.

    Google Scholar 

  • Shreiber, D. I., P. A. Enever, and R. T. Tranquillo. Effects of pdgf-bb on rat dermal fibroblast behavior in mechanically stressed and unstressed collagen and fibrin gels. Exp. Cell Res. 266:155–166, 2001.

    Google Scholar 

  • Silver, F. H., J. W. Freeman, and G. P. Seehra. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36:1529–1553, 2003.

    Google Scholar 

  • Soltz, M. A. and G. A. Ateshian. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28:150–159, 2000.

    Google Scholar 

  • Stegemann, J. P. and R. M. Nerem. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31:391–402, 2003.

    Google Scholar 

  • Stenzel, K. H., T. Miyata, and A. L. Rubin. Collagen as a biomaterial. Annu. Rev. Biophys. Bioeng. 3:231–253, 1974.

    Google Scholar 

  • Stopak, D. and A. K. Harris. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol. 90:383–398, 1982.

    Google Scholar 

  • Stylianopoulos, T. and V. H. Barocas. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196:2981–2990, 2007.

    MATH  MathSciNet  Google Scholar 

  • Thie, M., W. Schlumberger, R. Semich, J. Rauterberg, and H. Robenek. Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis. Eur. J. Cell Biol. 55:295–304, 1991.

    Google Scholar 

  • Tomasek, J. J., C. J. Haaksma, R. J. Eddy, and M. B. Vaughan. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232:359–368, 1992.

    Google Scholar 

  • Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.

    Google Scholar 

  • Tranquillo, R. T. Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem. Soc. Symp. 65:27–42, 1999.

    Google Scholar 

  • Tranquillo, R. T., T. S. Girton, B. A. Bromberek, T. G. Triebes, and D. L. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.

    Google Scholar 

  • Velegol, D. and F. Lanni. Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys. J. 81:1786–1792, 2001.

    Google Scholar 

  • Voytik-Harbin, S. L., B. A. Roeder, J. E. Sturgis, K. Kokini, and J. P. Robinson. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc. Microanal. 9: 74–85,2003.

    Google Scholar 

  • Wagenseil, J. E., E. L. Elson, and R. J. Okamoto. Cell orientation influences the biaxial mechanical properties of fibroblast populated collagen vessels. Ann. Biomed. Eng. 32:720–731, 2004.

    Google Scholar 

  • Wagenseil, J. E., T. Wakatsuki, R. J. Okamoto, G. I. Zahalak, and E. L. Elson. One-dimensional viscoelastic behavior of fibroblast populated collagen matrices. J. Biomech. Eng. 125:719–725, 2003.

    Google Scholar 

  • Wakatsuki, T. and E. L. Elson. Reciprocal interactions between cells and extracellular matrix during remodeling of tissue constructs. Biophys. Chem. 100:593–605, 2003.

    Google Scholar 

  • Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79:2353–2368, 2000.

    Google Scholar 

  • Wakitani, S., T. Goto, R. G. Young, J. M. Mansour, V. M. Goldberg, and A. I. Caplan. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 4:429–444, 1998.

    Google Scholar 

  • Weinberg, C. B. and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.

    Google Scholar 

  • Wille, J. J., E. L. Elson, and R. J. Okamoto. Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch. Ann. Biomed. Eng. 34:1678–1690, 2006.

    Google Scholar 

  • Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell Sourcing and Culture Conditions for Fibrin-Based Valve Constructs. Tissue Eng. 12:1489–1502, 2006.

    Google Scholar 

  • Wood, G. C. and M. K. Keech. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75:588–598, 1960.

    Google Scholar 

  • Wu, C. C., S. J. Ding, Y. H. Wang, M. J. Tang, and H. C. Chang. Mechanical properties of collagen gels derived from rats of different ages. J. Biomater. Sci. Polym. Ed. 16:1261–1275,2005.

    Google Scholar 

  • Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.

    Google Scholar 

  • Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937., 1989.

    Google Scholar 

  • Zahalak, G. I., J. E. Wagenseil, T. Wakatsuki, and E. L. Elson. A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79:2369–2381, 2000.

    Google Scholar 

  • Zhu, Y. K., T. Umino, X. D. Liu, H. J. Wang, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell. Dev. Biol. Anim. 37:10–16, 2001.

    Google Scholar 

  • Ziegler, T., R. W. Alexander, and R. M. Nerem. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225, 1995.

    Google Scholar 

  • Zimmermann, W. H., C. Fink, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114, 2000.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sander, E., Barocas, V. (2008). Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics