Skip to main content

Ovulation and Ovarian Cancer

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

Ovarian cancer (OC) most frequently arises from the ovarian surface epithelium (OSE), which comprises a single layer of mesothelial, squamous-to-cuboidal cells covering the entire surface of the ovary (1). This dynamic cellular layer and underlying basement membrane is breached and repaired each time a follicle ovulates, which can happen up to around 400 times in an average woman’s lifetime. It is, therefore, perhaps not surprising that there is a positive association between ovulation and OC and that a majority of OCs arise from the OSE. OC has genetic and environmental aetiologies, and there is growing evidence for inflammatory involvement as well. Ovulation is a natural inflammatory process, the suppression of which by pregnancy, breast-feeding, or oral contraception reduces OC risk. On the other hand, environmental factors and medical conditions associated with ovarian inflammation such as use of talc, endometriosis, ovarian cysts, and hyperthyroidism increase OC risk (2). If inflammation promotes cancer (3,4), we argue that antiinflammation is quite likely to be protective. In this chapter, we rehearse evidence that inflammation is integral to ovulation and consider how associated antiinflammatory mechanisms might impact OC initiation and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auersperg N, Wong AS, Choi KC, et al. (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–88.

    Article  PubMed  CAS  Google Scholar 

  2. Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 91:1459–67.

    Article  PubMed  CAS  Google Scholar 

  3. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–17.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming JS, Beaugie CR, Haviv I, et al. (2006) Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol 247:4–21.

    Article  PubMed  CAS  Google Scholar 

  5. Espey LL (1994) Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod 50:233–8.

    Article  PubMed  CAS  Google Scholar 

  6. Richards JS, Russell DL, Ochsner S, et al. (2002) Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 64:69–92.

    Article  PubMed  CAS  Google Scholar 

  7. Murdoch WJ, Wilken C, Young DA (1999) Sequence of apoptosis and inflammatory necrosis within the formative ovulatory site of sheep follicles. J Reprod Fertil 117:325–9.

    PubMed  CAS  Google Scholar 

  8. Rae MT, Hillier SG (2005) Steroid signalling in the ovarian surface epithelium. Trends Endocrinol Metab 16:327–33.

    Article  PubMed  CAS  Google Scholar 

  9. Murdoch WJ (1995) Programmed cell death in preovulatory ovine follicles. Biol Reprod 53:8–12.

    Article  PubMed  CAS  Google Scholar 

  10. Ghahremani M, Foghi A, Dorrington JH (1999) Etiology of ovarian cancer: a proposed mechanism. Med Hypotheses 52:23–6.

    Article  PubMed  CAS  Google Scholar 

  11. Kirsner RS, Eaglstein WH (1993) The wound healing process. Dermatol Clin 11:629–40.

    PubMed  CAS  Google Scholar 

  12. Verrecchia F, Mauviel A (2004) TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal 16:873–80.

    Article  PubMed  CAS  Google Scholar 

  13. Yang WL, Godwin AK, Xu XX (2004) Tumor necrosis factor-alpha-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: molecular basis linking ovulation and cancer risk. Cancer Res 64:1534–40.

    Article  PubMed  CAS  Google Scholar 

  14. Rae MT, Niven D, Ross A et al. (2004) Steroid signalling in human ovarian surface epithelial cells: the response to interleukin-1alpha determined by microarray analysis. J Endocrinol 183:19–28.

    Article  PubMed  CAS  Google Scholar 

  15. Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–72.

    Article  PubMed  CAS  Google Scholar 

  16. Erler JT, Bennewith KL, Nicolau M, et al. (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bukulmez O, Arici A (2000) Leukocytes in ovarian function. Hum Reprod Update 6:1–15.

    Article  PubMed  CAS  Google Scholar 

  18. Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 91:1459–673.

    Article  PubMed  CAS  Google Scholar 

  19. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–6.

    Article  PubMed  CAS  Google Scholar 

  20. Coussens LM, Tinkle CL, Hanahan D, et al. (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 1:481–90.

    Article  Google Scholar 

  21. Tiano HF, Loftin CD, Akunda J, et al. (2002) Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62:3395–401.

    PubMed  CAS  Google Scholar 

  22. Aggarwal BB, Shishodia S, Sandur SK, et al. (2006) Inflammation and cancer: How hot is the link? Biochem Pharmacol 72:1605–21.

    Article  PubMed  CAS  Google Scholar 

  23. Grosch S, Maier TJ, Schiffmann S, Geisslinger G, et al. (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–47.

    Article  PubMed  CAS  Google Scholar 

  24. Tomlinson JW, Walker EA, Bujalska IJ, et al. (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–66.

    Article  PubMed  CAS  Google Scholar 

  25. Tetsuka M, Thomas FJ, Thomas MJ, et al. (1997) Differential expression of messenger ribonucleic acids encoding 11beta-hydroxysteroid dehydrogenase types 1 and 2 in human granulosa cells. J Clin Endocrinol Metab 82:2006–9.

    PubMed  CAS  Google Scholar 

  26. Yong PY, Thong KJ, Andrew R, et al. (2000) Development-related increase in cortisol biosynthesis by human granulosa cells. J Clin Endocrinol Metab 85:728–33.

    Article  Google Scholar 

  27. Tetsuka M, Haines LC, Milne M, et al. (1999) Regulation of 11beta-hydroxysteroid dehydrogenase type 1 gene expression by LH and interleukin 1beta in cultured rat granulosa cells. J Endocrinol 163:417–23.

    Article  PubMed  CAS  Google Scholar 

  28. Yong PY, Harlow C, Thong KJ, et al. (2002) Regulation of 11beta-hydroxysteroid dehydrogenase type 1 gene expression in human ovarian surface epithelial cells by interleukin-1. Hum Reprod 1:2300–6. Erratum in: Hum Reprod 17:3009.

    Article  Google Scholar 

  29. Rae MT, Niven D, Critchley HO, et al. (2004) Antiinflammatory steroid action in human ovarian surface epithelial cells. J Clin Endocrinol Metab 89:4538–44.

    Article  PubMed  CAS  Google Scholar 

  30. Fleming JS, Beaugie CR, Haviv I, et al. (2006) Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol 247:4–21.

    Article  PubMed  CAS  Google Scholar 

  31. Langdon SP, Lawrie SS, Hay FG, et al. (1988) Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res 48:6166–72.

    PubMed  CAS  Google Scholar 

  32. Rabbitt EH, Gittoes NJ, Stewart PM, et al. (2003) 11beta-hydroxysteroid dehydrogenases, cell proliferation and malignancy. J Steroid Biochem Mol Biol 85:415–21.

    Article  PubMed  CAS  Google Scholar 

  33. Gubbay O, Guo W, Rae MT, et al. (2005) Inflammation-associated gene expression is altered between normal human ovarian surface epithelial cells and cell lines derived from ovarian adenocarcinomas. Br J Cancer 92:1927–33.

    Article  PubMed  CAS  Google Scholar 

  34. Altinoz MA, Korkmaz R (2004) NF-kappaB, macrophage migration inhibitory factor and cyclooxygenase-inhibitions as likely mechanisms behind the acetaminophen- and NSAID-prevention of the ovarian cancer. Neoplasma 51:239–47.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Hillier, S.G., Rae, M.T., Gubbay, O. (2008). Ovulation and Ovarian Cancer. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_16

Download citation

Publish with us

Policies and ethics