Skip to main content
Erschienen in: European Surgery 4/2013

01.08.2013 | Review

Tissue engineering of vascular grafts

verfasst von: H. Bergmeister, MD, DVM, M. Strobl, MD, Dipl.-Ing.(FH) C. Grasl, Ao.Univ. Prof. Dipl.-Ing. Dr.techn. R. Liska, Ao.Univ. Prof. Dipl.-Ing. Dr. H. Schima

Erschienen in: European Surgery | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Summary

Background

There is a considerable clinical need for a sufficient prosthetic small-diameter substitute which can compete with autologous vessels. Currently used synthetic materials have a poor performance due to high thrombogeneicity and development of intimal hyperplasia. Tissue engineering is an interesting alternative approach for vascular graft fabrication.

Methods

We briefly overviewed the development of tissue-engineered vascular substitutes including endothelialized biohybrid grafts, collagen and fibrin-based scaffolds, decellularized scaffolds, cell self-assembly approaches, and biodegradable constructs based on synthetic polymers.

Results

Significant advances have been made over the past decades in the development of tissue-engineered conduits. Biomechanical weakness, one of the major limitations of biologically based grafts has been resolved and two tissue-engineered grafts are currently under further investigation for clinical application.

Conclusions

Vascular tissue engineering is a promising approach to overcome the limitations of current therapies in small-diameter vascular replacement.
Literatur
1.
Zurück zum Zitat Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vas Surg. 2003;37:472–80.CrossRef Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vas Surg. 2003;37:472–80.CrossRef
2.
Zurück zum Zitat Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–54.PubMedCrossRef Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–54.PubMedCrossRef
3.
Zurück zum Zitat Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J Surg. 2007;31:682–9.PubMedCrossRef Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J Surg. 2007;31:682–9.PubMedCrossRef
4.
Zurück zum Zitat Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.CrossRef Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.CrossRef
5.
Zurück zum Zitat Brewster DC. Prosthetic grafts. In: Rutherford RB, editor. Vascular surgery. 5th ed. Philadelphia: WB Saunders; 2000. pp 559–84. Brewster DC. Prosthetic grafts. In: Rutherford RB, editor. Vascular surgery. 5th ed. Philadelphia: WB Saunders; 2000. pp 559–84.
6.
Zurück zum Zitat Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27:357–62.PubMedCrossRef Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27:357–62.PubMedCrossRef
7.
Zurück zum Zitat Weitz JI, Byrne J, Clagett P, Farkouh ME, Porter JM, Sackett DL, Strandness DE, Taylor LM. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.PubMedCrossRef Weitz JI, Byrne J, Clagett P, Farkouh ME, Porter JM, Sackett DL, Strandness DE, Taylor LM. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.PubMedCrossRef
8.
Zurück zum Zitat Loh SA, Howell BS, Rockman CB, Cayne NS, Adelman MA, Gulkarov I, Veith FJ, Maldonado TS. Ann Mid- and long-term results of the treatment of infrainguinal arterial occlusive disease with precuffed expanded polytetrafluoroethylene grafts compared with vein grafts. Vasc Surg. 2013;27:208–17.CrossRef Loh SA, Howell BS, Rockman CB, Cayne NS, Adelman MA, Gulkarov I, Veith FJ, Maldonado TS. Ann Mid- and long-term results of the treatment of infrainguinal arterial occlusive disease with precuffed expanded polytetrafluoroethylene grafts compared with vein grafts. Vasc Surg. 2013;27:208–17.CrossRef
9.
Zurück zum Zitat Pereira CE, Albers M, Romiti M, Brochado-Neto FC, Pereira CA. Meta-analysis of femoropopliteal bypass grafts for lower extremity arterial insufficiency. J Vasc Surg. 2006;44:510–7.PubMedCrossRef Pereira CE, Albers M, Romiti M, Brochado-Neto FC, Pereira CA. Meta-analysis of femoropopliteal bypass grafts for lower extremity arterial insufficiency. J Vasc Surg. 2006;44:510–7.PubMedCrossRef
10.
Zurück zum Zitat de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9:2969–79.PubMedCrossRef de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9:2969–79.PubMedCrossRef
11.
Zurück zum Zitat Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:104A–15A.CrossRef Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:104A–15A.CrossRef
12.
Zurück zum Zitat Zilla P, Bezuidenhout D, Human P. Prostheic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–27.PubMedCrossRef Zilla P, Bezuidenhout D, Human P. Prostheic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–27.PubMedCrossRef
13.
Zurück zum Zitat Kapadia MR, Popwich DA, Kibbe MR. Modified prosthetic vascular conduits. Circulation. 2008;117:1873–82.PubMedCrossRef Kapadia MR, Popwich DA, Kibbe MR. Modified prosthetic vascular conduits. Circulation. 2008;117:1873–82.PubMedCrossRef
14.
Zurück zum Zitat Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Eng. 2001;3:225–43.CrossRef Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Eng. 2001;3:225–43.CrossRef
15.
Zurück zum Zitat Isenberg BC, Chrysanthi W, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98:25–35.PubMedCrossRef Isenberg BC, Chrysanthi W, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98:25–35.PubMedCrossRef
16.
17.
Zurück zum Zitat L’Heraux N, Dusserre N, Garrido S, de la Fuente L, McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts-from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4:389–95.CrossRef L’Heraux N, Dusserre N, Garrido S, de la Fuente L, McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts-from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4:389–95.CrossRef
19.
Zurück zum Zitat Herring M, Smith J, Dalsing M, Glover J, Compton R, Etchberger K, Zollinger T. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J Vasc Surg. 1994;20:650–5.PubMedCrossRef Herring M, Smith J, Dalsing M, Glover J, Compton R, Etchberger K, Zollinger T. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J Vasc Surg. 1994;20:650–5.PubMedCrossRef
20.
Zurück zum Zitat Pasic M, Müller-Glauser W, von Segesser LK, Lachat M, Mihaljevic T, Turina MI. Superior late patency of small-diamter dDacron grafts seeded with omental microvascular cells: an experimental study. Ann Thorac Surg. 1994;58:677–83.PubMedCrossRef Pasic M, Müller-Glauser W, von Segesser LK, Lachat M, Mihaljevic T, Turina MI. Superior late patency of small-diamter dDacron grafts seeded with omental microvascular cells: an experimental study. Ann Thorac Surg. 1994;58:677–83.PubMedCrossRef
21.
Zurück zum Zitat Zilla P, Deutsch M, Meinhart J. Endothelial cell transplantation. Semin Vasc Surg. 1999;12:52–63.PubMed Zilla P, Deutsch M, Meinhart J. Endothelial cell transplantation. Semin Vasc Surg. 1999;12:52–63.PubMed
22.
Zurück zum Zitat Zilla P, Fasol R, Deutsch M, Fischlein T, Minar E, Hammerle A, Krupicka O, Kadletz M, Meinhart J. Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg. 1987;6:535–22.PubMed Zilla P, Fasol R, Deutsch M, Fischlein T, Minar E, Hammerle A, Krupicka O, Kadletz M, Meinhart J. Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg. 1987;6:535–22.PubMed
23.
Zurück zum Zitat Feugier P, Black RA, Hunt JA, How TV. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials. 2005;26:1457–66.PubMedCrossRef Feugier P, Black RA, Hunt JA, How TV. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials. 2005;26:1457–66.PubMedCrossRef
24.
Zurück zum Zitat Baguneid M, Murray D, Salacinski HJ, Fuller B, Hamilton G, Walker M, Seifalian AM. Shear stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol Appl Biochem. 2004;39:151–7.PubMedCrossRef Baguneid M, Murray D, Salacinski HJ, Fuller B, Hamilton G, Walker M, Seifalian AM. Shear stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol Appl Biochem. 2004;39:151–7.PubMedCrossRef
25.
Zurück zum Zitat Deutsch M, Meinhart J, Zilla P, Howanitz N, Gorlitzer M, Froeschl A, Stuempflen A, Bezidenhout D, Grabenwoeger M. Long-term experience in autologous in vitro endothelialisation of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49:352–62.PubMedCrossRef Deutsch M, Meinhart J, Zilla P, Howanitz N, Gorlitzer M, Froeschl A, Stuempflen A, Bezidenhout D, Grabenwoeger M. Long-term experience in autologous in vitro endothelialisation of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49:352–62.PubMedCrossRef
26.
Zurück zum Zitat Parikh SA, Edelman ER. Endothelial cell delivery for cardiovascular therapy. Adv Drug Deliv Rev. 2000;42:139–61.PubMedCrossRef Parikh SA, Edelman ER. Endothelial cell delivery for cardiovascular therapy. Adv Drug Deliv Rev. 2000;42:139–61.PubMedCrossRef
27.
Zurück zum Zitat Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbel JA, Deutsch M, Zilla P. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng. 2005;11:887–95.PubMedCrossRef Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbel JA, Deutsch M, Zilla P. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng. 2005;11:887–95.PubMedCrossRef
28.
Zurück zum Zitat Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.PubMedCrossRef Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.PubMedCrossRef
29.
Zurück zum Zitat L’Heraux N, German L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg. 1993;17:499–509. L’Heraux N, German L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg. 1993;17:499–509.
30.
Zurück zum Zitat Girton TS, Oegama TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng. 2000;122:216–23.PubMedCrossRef Girton TS, Oegama TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng. 2000;122:216–23.PubMedCrossRef
31.
Zurück zum Zitat Swartz DD, Russel JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288:1451–60.CrossRef Swartz DD, Russel JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288:1451–60.CrossRef
32.
Zurück zum Zitat Barocas VH, Girton TS, Tranquillo RT. Enginered alignment in media equivalents: magnetic prealignment and mandrel compaction. J Biomech Eng. 1998;120:660–6.PubMedCrossRef Barocas VH, Girton TS, Tranquillo RT. Enginered alignment in media equivalents: magnetic prealignment and mandrel compaction. J Biomech Eng. 1998;120:660–6.PubMedCrossRef
33.
Zurück zum Zitat Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–22.PubMedCrossRef Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–22.PubMedCrossRef
34.
Zurück zum Zitat Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.PubMedCrossRef Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.PubMedCrossRef
35.
Zurück zum Zitat Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995;60:353–8.CrossRef Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995;60:353–8.CrossRef
36.
Zurück zum Zitat Ketchedjian A, Jones AL, Krueger P, Robinson E, Crouch K, Wolfinbarger L, Hopkins R. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg. 2005;79:888–96.PubMedCrossRef Ketchedjian A, Jones AL, Krueger P, Robinson E, Crouch K, Wolfinbarger L, Hopkins R. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg. 2005;79:888–96.PubMedCrossRef
37.
Zurück zum Zitat Mc Fetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70:224–34.CrossRef Mc Fetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70:224–34.CrossRef
38.
Zurück zum Zitat Conklin BS, Wu H, Lin PH, Lumsden AB, Chen C. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif Organs. 2004;28:668–75.PubMedCrossRef Conklin BS, Wu H, Lin PH, Lumsden AB, Chen C. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif Organs. 2004;28:668–75.PubMedCrossRef
39.
Zurück zum Zitat Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE. Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.PubMedCrossRef Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE. Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.PubMedCrossRef
40.
Zurück zum Zitat Andree B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. Tiss Eng Part B Rev. 2013 Jan 14;19(4):279–91.CrossRef Andree B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. Tiss Eng Part B Rev. 2013 Jan 14;19(4):279–91.CrossRef
41.
Zurück zum Zitat Bergmeister H, Boeck P, Kasimir M, Fleck T, Fitzal F, Husinsky W, Mittlboeck M, Stoehr H, Losert U, Wolner E, Grabenwoeger M. Effect of laser perforation on the remodeling of acellular matrix grafts. J Biomed Mater Res B: Appl Biomater. 2005;74:495–503. Bergmeister H, Boeck P, Kasimir M, Fleck T, Fitzal F, Husinsky W, Mittlboeck M, Stoehr H, Losert U, Wolner E, Grabenwoeger M. Effect of laser perforation on the remodeling of acellular matrix grafts. J Biomed Mater Res B: Appl Biomater. 2005;74:495–503.
42.
Zurück zum Zitat Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. J Biomed Mater Res B Appl Biomater. 2008;87:95–104.PubMed Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. J Biomed Mater Res B Appl Biomater. 2008;87:95–104.PubMed
43.
Zurück zum Zitat L’Heraeux N, Paquet S, Lacoe R, Germain L, Auger FA. A completely biological tissue engineered human blood vessel. FASEB J. 1998;12:47–56. L’Heraeux N, Paquet S, Lacoe R, Germain L, Auger FA. A completely biological tissue engineered human blood vessel. FASEB J. 1998;12:47–56.
44.
Zurück zum Zitat Peck M, Gebhart D, Dusserre N, McAllister T, L’Heraeux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs. 2012;195:144–58.PubMedCrossRef Peck M, Gebhart D, Dusserre N, McAllister T, L’Heraeux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs. 2012;195:144–58.PubMedCrossRef
45.
Zurück zum Zitat Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284:489–93.PubMedCrossRef Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284:489–93.PubMedCrossRef
46.
Zurück zum Zitat Shin’oka T, Imai Y, Ikada Y. Transplantation of tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.CrossRef Shin’oka T, Imai Y, Ikada Y. Transplantation of tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.CrossRef
47.
Zurück zum Zitat Qint C, Arief M, Muto A, Dradik A, Niklason LE. Allogeneic human tissue-engineered blood vessel. J Vasc Surg. 2012;55:790–8.CrossRef Qint C, Arief M, Muto A, Dradik A, Niklason LE. Allogeneic human tissue-engineered blood vessel. J Vasc Surg. 2012;55:790–8.CrossRef
48.
Zurück zum Zitat Dahl SL, Blum JL, Niklason LE. Bioengineered vascular grafts: can we make them of off-the-shelf? Trends Cardiovasc Med. 2011;21:83–9.PubMedCrossRef Dahl SL, Blum JL, Niklason LE. Bioengineered vascular grafts: can we make them of off-the-shelf? Trends Cardiovasc Med. 2011;21:83–9.PubMedCrossRef
49.
Zurück zum Zitat Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.PubMedCrossRef Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.PubMedCrossRef
50.
Zurück zum Zitat Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18:1148–53.PubMedCrossRef Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18:1148–53.PubMedCrossRef
51.
Zurück zum Zitat De Valence S, Tille JC, Mugnal D, Mrowczynski W, Gurny R, Möller M, Walpoth BH. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47.PubMedCrossRef De Valence S, Tille JC, Mugnal D, Mrowczynski W, Gurny R, Möller M, Walpoth BH. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47.PubMedCrossRef
52.
Zurück zum Zitat Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.PubMedCrossRef Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.PubMedCrossRef
53.
Zurück zum Zitat Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun composite nanofibers for tissue engineering regeneration. J Nanosci Nanotechnol. 2011;11:3039–57.PubMedCrossRef Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun composite nanofibers for tissue engineering regeneration. J Nanosci Nanotechnol. 2011;11:3039–57.PubMedCrossRef
54.
Zurück zum Zitat Kong X, Han B, Li H, Liang Y, Shao K, Liu W. New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J Biomed Mater Res Part A. 2012;100A:1494–1504.CrossRef Kong X, Han B, Li H, Liang Y, Shao K, Liu W. New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J Biomed Mater Res Part A. 2012;100A:1494–1504.CrossRef
55.
Zurück zum Zitat Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011;63:209–20.PubMedCrossRef Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011;63:209–20.PubMedCrossRef
56.
Zurück zum Zitat Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.PubMedCrossRef Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.PubMedCrossRef
57.
Zurück zum Zitat Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.PubMedCrossRef Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.PubMedCrossRef
58.
Zurück zum Zitat Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behaviour and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93:716–23.PubMed Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behaviour and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93:716–23.PubMed
59.
Zurück zum Zitat Bergmeister H, Schreiber C, Grasl C, Walter I, Plasenzotti R, Stoiber M, Bernhard D, Schima H. Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater. 2013;9:6032–40.PubMedCrossRef Bergmeister H, Schreiber C, Grasl C, Walter I, Plasenzotti R, Stoiber M, Bernhard D, Schima H. Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater. 2013;9:6032–40.PubMedCrossRef
60.
Zurück zum Zitat Bergmeister H, Grasl C, Walter I, Plasenzotti R, Stoiber M, Losert U, Weigel G, Schima H. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular specific host cells. Artif Organs. 2012;36:54–61.PubMedCrossRef Bergmeister H, Grasl C, Walter I, Plasenzotti R, Stoiber M, Losert U, Weigel G, Schima H. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular specific host cells. Artif Organs. 2012;36:54–61.PubMedCrossRef
61.
Zurück zum Zitat Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. J Polym Sci Part A: Polym Chem. 2012;50:1272–80.CrossRef Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. J Polym Sci Part A: Polym Chem. 2012;50:1272–80.CrossRef
62.
Zurück zum Zitat Bergmeister H, Baudis S, Grasl C, Stoiber M, Schreiber C, Walter I, Plasenzotti R, Liska R, Schima H. In vivo evaluation of electrospun, biodegradable and non-degradable elastomeric vascular grafts. Int J Art Organs. 2011;34:641. Bergmeister H, Baudis S, Grasl C, Stoiber M, Schreiber C, Walter I, Plasenzotti R, Liska R, Schima H. In vivo evaluation of electrospun, biodegradable and non-degradable elastomeric vascular grafts. Int J Art Organs. 2011;34:641.
Metadaten
Titel
Tissue engineering of vascular grafts
verfasst von
H. Bergmeister, MD, DVM
M. Strobl, MD
Dipl.-Ing.(FH) C. Grasl
Ao.Univ. Prof. Dipl.-Ing. Dr.techn. R. Liska
Ao.Univ. Prof. Dipl.-Ing. Dr. H. Schima
Publikationsdatum
01.08.2013
Verlag
Springer Vienna
Erschienen in
European Surgery / Ausgabe 4/2013
Print ISSN: 1682-8631
Elektronische ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-013-0224-x

Weitere Artikel der Ausgabe 4/2013

European Surgery 4/2013 Zur Ausgabe