Skip to main content
Erschienen in: European Surgery 3/2013

01.06.2013 | Main Topic

Tissue engineered constructs for peripheral nerve surgery

verfasst von: Asst. Prof. P. J. Johnson, PhD, M. D. Wood, PhD, A. M . Moore, MD, S. E. Mackinnon, MD

Erschienen in: European Surgery | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Summary

Background

Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump.

Methods

A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal.

Results

Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons.

Conclusions

The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Literatur
1.
Zurück zum Zitat Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006;34(6):785–8.PubMedCrossRef Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006;34(6):785–8.PubMedCrossRef
2.
Zurück zum Zitat Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol. 1943;102(2):191–215.PubMed Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol. 1943;102(2):191–215.PubMed
3.
Zurück zum Zitat Xu QG, et al. Motoneuron survival after chronic and sequential peripheral nerve injuries in the rat. J Neurosurg. 2010;112(4):890–9.PubMedCrossRef Xu QG, et al. Motoneuron survival after chronic and sequential peripheral nerve injuries in the rat. J Neurosurg. 2010;112(4):890–9.PubMedCrossRef
4.
Zurück zum Zitat Schmalbruch H. Loss of sensory neurons after sciatic nerve section in the rat. Anat Rec. 1987;219(3):323–9.PubMedCrossRef Schmalbruch H. Loss of sensory neurons after sciatic nerve section in the rat. Anat Rec. 1987;219(3):323–9.PubMedCrossRef
5.
Zurück zum Zitat McKay Hart A, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res. 2002;142(3):308–18.PubMedCrossRef McKay Hart A, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res. 2002;142(3):308–18.PubMedCrossRef
6.
Zurück zum Zitat Terenghi G, Hart A, Wiberg M. The nerve injury and the dying neurons: diagnosis and prevention. J Hand Surg Eur Vol. 2011;36(9):730–4.PubMed Terenghi G, Hart A, Wiberg M. The nerve injury and the dying neurons: diagnosis and prevention. J Hand Surg Eur Vol. 2011;36(9):730–4.PubMed
7.
Zurück zum Zitat West CA, et al. Sensory neurons of the human brachial plexus: a quantitative study employing optical fractionation and in vivo volumetric magnetic resonance imaging. Neurosurgery. 2012;70(5):1183–94.PubMedCrossRef West CA, et al. Sensory neurons of the human brachial plexus: a quantitative study employing optical fractionation and in vivo volumetric magnetic resonance imaging. Neurosurgery. 2012;70(5):1183–94.PubMedCrossRef
8.
Zurück zum Zitat Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14(1–2):67–116.PubMedCrossRef Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14(1–2):67–116.PubMedCrossRef
9.
Zurück zum Zitat Beuche W, Friede RL. The role of nonresident cells in Wallerian degeneration. J Neurocytol. 1984;13(5):767–96.PubMedCrossRef Beuche W, Friede RL. The role of nonresident cells in Wallerian degeneration. J Neurocytol. 1984;13(5):767–96.PubMedCrossRef
10.
Zurück zum Zitat Scheidt P, Friede RL. Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations. Acta Neuropathol. 1987;75(1):77–84.PubMedCrossRef Scheidt P, Friede RL. Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations. Acta Neuropathol. 1987;75(1):77–84.PubMedCrossRef
11.
Zurück zum Zitat Bruck W. The role of macrophages in Wallerian degeneration. Brain Pathol. 1997;7(2):741–52.PubMedCrossRef Bruck W. The role of macrophages in Wallerian degeneration. Brain Pathol. 1997;7(2):741–52.PubMedCrossRef
12.
Zurück zum Zitat Witzel C, Rohde C, Brushart TM. Pathway sampling by regenerating peripheral axons. J Comp Neurol. 2005;485(3):183–90.PubMedCrossRef Witzel C, Rohde C, Brushart TM. Pathway sampling by regenerating peripheral axons. J Comp Neurol. 2005;485(3):183–90.PubMedCrossRef
13.
Zurück zum Zitat Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am. 1976;58(2):209–18.PubMed Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am. 1976;58(2):209–18.PubMed
14.
Zurück zum Zitat Millesi H. Peripheral nerve injuries. Nerve sutures and nerve grafting. Scand J Plast Reconstr Surg Suppl. 1982;19:25–37. Millesi H. Peripheral nerve injuries. Nerve sutures and nerve grafting. Scand J Plast Reconstr Surg Suppl. 1982;19:25–37.
15.
Zurück zum Zitat de Medinaceli L, Wyatt RJ, Freed WJ. Peripheral nerve reconnection: mechanical, thermal, and ionic conditions that promote the return of function. Exp Neurol. 1983;81(2):469–87.PubMedCrossRef de Medinaceli L, Wyatt RJ, Freed WJ. Peripheral nerve reconnection: mechanical, thermal, and ionic conditions that promote the return of function. Exp Neurol. 1983;81(2):469–87.PubMedCrossRef
16.
Zurück zum Zitat Millesi H. Peripheral nerve repair: terminology, questions, and facts. J Reconstr Microsurg. 1985;2(1):21–31.PubMedCrossRef Millesi H. Peripheral nerve repair: terminology, questions, and facts. J Reconstr Microsurg. 1985;2(1):21–31.PubMedCrossRef
17.
Zurück zum Zitat Chiu DT, Ishii C. Management of peripheral nerve injuries. Orthop Clin North Am. 1986;17(3):365–73.PubMed Chiu DT, Ishii C. Management of peripheral nerve injuries. Orthop Clin North Am. 1986;17(3):365–73.PubMed
18.
Zurück zum Zitat Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.PubMedCrossRef Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.PubMedCrossRef
19.
Zurück zum Zitat Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg. 2002;18(2):97–109.PubMedCrossRef Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg. 2002;18(2):97–109.PubMedCrossRef
20.
Zurück zum Zitat Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396–404.PubMedCrossRef Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396–404.PubMedCrossRef
21.
Zurück zum Zitat Madduri S, Gander B. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J Control Release. 2012;161(2):274–82.PubMedCrossRef Madduri S, Gander B. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J Control Release. 2012;161(2):274–82.PubMedCrossRef
22.
Zurück zum Zitat Lundborg G, Hansson HA. Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Res. 1979;178(2–3):573–6.PubMedCrossRef Lundborg G, Hansson HA. Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Res. 1979;178(2–3):573–6.PubMedCrossRef
23.
Zurück zum Zitat Lundborg G, Hansson HA. Nerve regeneration through preformed pseudosynovial tubes. A preliminary report of a new experimental model for studying the regeneration and reorganization capacity of peripheral nerve tissue. J Hand Surg Am. 1980;5(1):35–8.PubMed Lundborg G, Hansson HA. Nerve regeneration through preformed pseudosynovial tubes. A preliminary report of a new experimental model for studying the regeneration and reorganization capacity of peripheral nerve tissue. J Hand Surg Am. 1980;5(1):35–8.PubMed
24.
Zurück zum Zitat Lundborg G, et al. Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes—an experimental study on the sciatic nerve of rats. J Neurosci Res. 1981;6(3):265–81.PubMedCrossRef Lundborg G, et al. Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes—an experimental study on the sciatic nerve of rats. J Neurosci Res. 1981;6(3):265–81.PubMedCrossRef
25.
Zurück zum Zitat Lundborg G, et al. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.PubMedCrossRef Lundborg G, et al. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.PubMedCrossRef
26.
Zurück zum Zitat Merle M, et al. Complications from silicon-polymer intubulation of nerves. Microsurgery. 1989;10(2):130–3.PubMedCrossRef Merle M, et al. Complications from silicon-polymer intubulation of nerves. Microsurgery. 1989;10(2):130–3.PubMedCrossRef
27.
Zurück zum Zitat Dellon AL. Use of a silicone tube for the reconstruction of a nerve injury. J Hand Surg Br. 1994;19(3):271–2.PubMedCrossRef Dellon AL. Use of a silicone tube for the reconstruction of a nerve injury. J Hand Surg Br. 1994;19(3):271–2.PubMedCrossRef
28.
Zurück zum Zitat Battiston B, et al. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.PubMedCrossRef Battiston B, et al. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.PubMedCrossRef
29.
Zurück zum Zitat Hadlock T, et al. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg. 1998;124(10):1081–6.PubMed Hadlock T, et al. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg. 1998;124(10):1081–6.PubMed
30.
Zurück zum Zitat Nicoli Aldini N, et al. Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials. 1996;17(10):959–62.PubMedCrossRef Nicoli Aldini N, et al. Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials. 1996;17(10):959–62.PubMedCrossRef
31.
Zurück zum Zitat Archibald SJ, et al. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306(4):685–96.PubMedCrossRef Archibald SJ, et al. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306(4):685–96.PubMedCrossRef
32.
Zurück zum Zitat Li ST, et al. Peripheral nerve repair with collagen conduits. Clin Mater. 1992;9(3–4):195–200.PubMedCrossRef Li ST, et al. Peripheral nerve repair with collagen conduits. Clin Mater. 1992;9(3–4):195–200.PubMedCrossRef
33.
Zurück zum Zitat Whitworth IH, et al. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg Br. 1995;20(4):429–36.PubMedCrossRef Whitworth IH, et al. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg Br. 1995;20(4):429–36.PubMedCrossRef
34.
Zurück zum Zitat Kalbermatten DF, et al. New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg. 2009;25(1):27–33.PubMedCrossRef Kalbermatten DF, et al. New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg. 2009;25(1):27–33.PubMedCrossRef
35.
Zurück zum Zitat Pfister BJ, et al. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39(2):81–124.PubMedCrossRef Pfister BJ, et al. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39(2):81–124.PubMedCrossRef
36.
Zurück zum Zitat Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Case report. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79–82.PubMedCrossRef Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Case report. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79–82.PubMedCrossRef
37.
Zurück zum Zitat Lundborg G, et al. Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg Br. 1994;19(3):273–6.PubMedCrossRef Lundborg G, et al. Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg Br. 1994;19(3):273–6.PubMedCrossRef
38.
Zurück zum Zitat Lundborg G, et al. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am. 1997;22(1):99–106.PubMedCrossRef Lundborg G, et al. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am. 1997;22(1):99–106.PubMedCrossRef
39.
Zurück zum Zitat Lundborg G, et al. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br. 2004;29(2):100–7.PubMedCrossRef Lundborg G, et al. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br. 2004;29(2):100–7.PubMedCrossRef
40.
Zurück zum Zitat Moore AM, et al. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180–6.CrossRef Moore AM, et al. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180–6.CrossRef
41.
Zurück zum Zitat Mackinnon SE. Technical use of synthetic conduits for nerve repair. J Hand Surg Am. 2011;36(1):183.PubMedCrossRef Mackinnon SE. Technical use of synthetic conduits for nerve repair. J Hand Surg Am. 2011;36(1):183.PubMedCrossRef
42.
Zurück zum Zitat Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury. 2012;43(5):553–72.PubMedCrossRef Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury. 2012;43(5):553–72.PubMedCrossRef
43.
Zurück zum Zitat Johnson PJ, et al. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90.PubMedCrossRef Johnson PJ, et al. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90.PubMedCrossRef
44.
Zurück zum Zitat Lloyd BM, et al. Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery. 2007;27(2):138–45.PubMedCrossRef Lloyd BM, et al. Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery. 2007;27(2):138–45.PubMedCrossRef
45.
Zurück zum Zitat Lundborg G, et al. Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J Hand Surg Am. 1982;7(6):580–7.PubMed Lundborg G, et al. Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J Hand Surg Am. 1982;7(6):580–7.PubMed
46.
Zurück zum Zitat Madison RD, et al. Peripheral nerve regeneration with entubulation repair: comparison of biodegradeable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel. Exp Neurol. 1987;95(2):378–90.PubMedCrossRef Madison RD, et al. Peripheral nerve regeneration with entubulation repair: comparison of biodegradeable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel. Exp Neurol. 1987;95(2):378–90.PubMedCrossRef
47.
Zurück zum Zitat Madison RD, Da Silva CF, Dikkes P. Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Res. 1988;447(2):325–34.PubMedCrossRef Madison RD, Da Silva CF, Dikkes P. Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Res. 1988;447(2):325–34.PubMedCrossRef
48.
Zurück zum Zitat Madison RD, Archibald SJ. Point sources of Schwann cells result in growth into a nerve entubulation repair site in the absence of axons: effects of freeze-thawing. Exp Neurol. 1994;128(2):266–75.PubMedCrossRef Madison RD, Archibald SJ. Point sources of Schwann cells result in growth into a nerve entubulation repair site in the absence of axons: effects of freeze-thawing. Exp Neurol. 1994;128(2):266–75.PubMedCrossRef
49.
Zurück zum Zitat Williams LR. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res. 1987;12(10):851–60.PubMedCrossRef Williams LR. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res. 1987;12(10):851–60.PubMedCrossRef
50.
Zurück zum Zitat Wood MD, Sakiyama-Elbert SE. Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems. J Biomed Mater Res A. 2008;84(2):300–12.PubMed Wood MD, Sakiyama-Elbert SE. Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems. J Biomed Mater Res A. 2008;84(2):300–12.PubMed
51.
Zurück zum Zitat Wood MD, Borschel GH, Sakiyama-Elbert SE. Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an affinity-based delivery system. J Biomed Mater Res A. 2009;89(4):909–18.PubMed Wood MD, Borschel GH, Sakiyama-Elbert SE. Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an affinity-based delivery system. J Biomed Mater Res A. 2009;89(4):909–18.PubMed
52.
Zurück zum Zitat Wood MD, et al. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 2009;5(4):959–68.PubMedCrossRef Wood MD, et al. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 2009;5(4):959–68.PubMedCrossRef
53.
Zurück zum Zitat Wood MD, et al. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng. 2010;106(6):970–9.PubMedCrossRef Wood MD, et al. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng. 2010;106(6):970–9.PubMedCrossRef
54.
Zurück zum Zitat Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol. 1994;43(3):187–233.PubMedCrossRef Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol. 1994;43(3):187–233.PubMedCrossRef
55.
Zurück zum Zitat Tung TH. Tacrolimus (FK506): safety and applications in reconstructive surgery. Hand (N Y). 2010;5(1):1–8.CrossRef Tung TH. Tacrolimus (FK506): safety and applications in reconstructive surgery. Hand (N Y). 2010;5(1):1–8.CrossRef
56.
Zurück zum Zitat Mackinnon SE, et al. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107(6):1419–29.PubMedCrossRef Mackinnon SE, et al. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107(6):1419–29.PubMedCrossRef
57.
58.
Zurück zum Zitat Glasby MA, et al. Regeneration of the sciatic nerve in rats. The effect of muscle basement membrane. J Bone Joint Surg Br. 1986;68(5):829–33.PubMed Glasby MA, et al. Regeneration of the sciatic nerve in rats. The effect of muscle basement membrane. J Bone Joint Surg Br. 1986;68(5):829–33.PubMed
59.
Zurück zum Zitat Glasby MA, et al. Degenerated muscle grafts used for peripheral nerve repair in primates. J Hand Surg Br. 1986;11(3):347–51.PubMedCrossRef Glasby MA, et al. Degenerated muscle grafts used for peripheral nerve repair in primates. J Hand Surg Br. 1986;11(3):347–51.PubMedCrossRef
60.
Zurück zum Zitat Glasby MA, et al. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol. 1986;15(4):497–510.PubMedCrossRef Glasby MA, et al. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol. 1986;15(4):497–510.PubMedCrossRef
61.
Zurück zum Zitat Meek MF, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials. 2001;22(10):1177–85.PubMedCrossRef Meek MF, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials. 2001;22(10):1177–85.PubMedCrossRef
62.
Zurück zum Zitat Wood MD, et al. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193(4):321–33.PubMedCrossRef Wood MD, et al. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193(4):321–33.PubMedCrossRef
63.
Zurück zum Zitat Szynkaruk M, et al. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev. 2013;19(1):83–96.PubMedCrossRef Szynkaruk M, et al. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev. 2013;19(1):83–96.PubMedCrossRef
64.
Zurück zum Zitat Mackinnon SE, et al. The peripheral nerve allograft: an assessment of regeneration in the immunosuppressed host. Plast Reconstr Surg. 1987;79(3):436–46.PubMedCrossRef Mackinnon SE, et al. The peripheral nerve allograft: an assessment of regeneration in the immunosuppressed host. Plast Reconstr Surg. 1987;79(3):436–46.PubMedCrossRef
65.
Zurück zum Zitat Ide C, Osawa T, Tohyama K. Nerve regeneration through allogeneic nerve grafts, with special reference to the role of the Schwann cell basal lamina. Prog Neurobiol. 1990;34(1):1–38.PubMedCrossRef Ide C, Osawa T, Tohyama K. Nerve regeneration through allogeneic nerve grafts, with special reference to the role of the Schwann cell basal lamina. Prog Neurobiol. 1990;34(1):1–38.PubMedCrossRef
66.
Zurück zum Zitat Mackinnon SE, et al. Peripheral nerve allograft: an immunological assessment of pretreatment methods. Neurosurgery. 1984;14(2):167–71.PubMedCrossRef Mackinnon SE, et al. Peripheral nerve allograft: an immunological assessment of pretreatment methods. Neurosurgery. 1984;14(2):167–71.PubMedCrossRef
67.
Zurück zum Zitat Mackinnon SE, et al. Peripheral nerve allograft: an assessment of regeneration across pretreated nerve allografts. Neurosurgery. 1984;15(5):690–3.PubMedCrossRef Mackinnon SE, et al. Peripheral nerve allograft: an assessment of regeneration across pretreated nerve allografts. Neurosurgery. 1984;15(5):690–3.PubMedCrossRef
68.
Zurück zum Zitat Gulati AK, Cole GP. Nerve graft immunogenicity as a factor determining axonal regeneration in the rat. J Neurosurg. 1990;72(1):114–22.PubMedCrossRef Gulati AK, Cole GP. Nerve graft immunogenicity as a factor determining axonal regeneration in the rat. J Neurosurg. 1990;72(1):114–22.PubMedCrossRef
69.
Zurück zum Zitat Evans PJ, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21(11):1507–22.PubMedCrossRef Evans PJ, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21(11):1507–22.PubMedCrossRef
70.
Zurück zum Zitat Hudson TW, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004;10(11–12):1641–51.PubMedCrossRef Hudson TW, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004;10(11–12):1641–51.PubMedCrossRef
71.
Zurück zum Zitat Hess JR, et al. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg. 2007;119(1):246–59.PubMedCrossRef Hess JR, et al. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg. 2007;119(1):246–59.PubMedCrossRef
72.
Zurück zum Zitat Moradzadeh A, et al. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212(2):370–6.PubMedCrossRef Moradzadeh A, et al. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212(2):370–6.PubMedCrossRef
73.
Zurück zum Zitat Zalewski AA, Gulati AK. Evaluation of histocompatibility as a factor in the repair of nerve with a frozen nerve allograft. J Neurosurg. 1982;56(4):550–4.PubMedCrossRef Zalewski AA, Gulati AK. Evaluation of histocompatibility as a factor in the repair of nerve with a frozen nerve allograft. J Neurosurg. 1982;56(4):550–4.PubMedCrossRef
74.
Zurück zum Zitat Gulati AK, Cole GP. Immunogenicity and regenerative potential of acellular nerve allografts to repair peripheral nerve in rats and rabbits. Acta Neurochir (Wien). 1994;126(2–4):158–64.PubMedCrossRef Gulati AK, Cole GP. Immunogenicity and regenerative potential of acellular nerve allografts to repair peripheral nerve in rats and rabbits. Acta Neurochir (Wien). 1994;126(2–4):158–64.PubMedCrossRef
75.
Zurück zum Zitat Osawa T, Tohyama K, Ide C. Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. J Neurocytol. 1990;19(6):833–49.PubMedCrossRef Osawa T, Tohyama K, Ide C. Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. J Neurocytol. 1990;19(6):833–49.PubMedCrossRef
76.
Zurück zum Zitat Danielsen N, et al. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 1995;681(1–2):105–8.PubMedCrossRef Danielsen N, et al. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 1995;681(1–2):105–8.PubMedCrossRef
77.
Zurück zum Zitat Johnson PC, et al. Preparation of cell-free extracellular matrix from human peripheral nerve. Muscle Nerve. 1982;5(4):335–44.PubMedCrossRef Johnson PC, et al. Preparation of cell-free extracellular matrix from human peripheral nerve. Muscle Nerve. 1982;5(4):335–44.PubMedCrossRef
78.
Zurück zum Zitat Levi AD, et al. Cold storage of peripheral nerves: an in vitro assay of cell viability and function. Glia. 1994;10(2):121–31.PubMedCrossRef Levi AD, et al. Cold storage of peripheral nerves: an in vitro assay of cell viability and function. Glia. 1994;10(2):121–31.PubMedCrossRef
79.
Zurück zum Zitat Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795(1–2):44–54.PubMedCrossRef Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795(1–2):44–54.PubMedCrossRef
80.
Zurück zum Zitat Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10(9–10):1346–58.PubMed Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10(9–10):1346–58.PubMed
81.
Zurück zum Zitat Fox IK, et al. Prolonged cold-preservation of nerve allografts. Muscle Nerve. 2005;31(1):59–69.PubMedCrossRef Fox IK, et al. Prolonged cold-preservation of nerve allografts. Muscle Nerve. 2005;31(1):59–69.PubMedCrossRef
82.
Zurück zum Zitat Yang LJ, et al. Sialidase enhances spinal axon outgrowth in vivo. Proc Natl Acad Sci U S A. 2006;103(29):11057–62.PubMedCrossRef Yang LJ, et al. Sialidase enhances spinal axon outgrowth in vivo. Proc Natl Acad Sci U S A. 2006;103(29):11057–62.PubMedCrossRef
83.
Zurück zum Zitat Graham JB, et al. Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration. Exp Neurol. 2007;203(1):185–95.PubMedCrossRef Graham JB, et al. Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration. Exp Neurol. 2007;203(1):185–95.PubMedCrossRef
84.
Zurück zum Zitat Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207(1):163–70.PubMedCrossRef Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207(1):163–70.PubMedCrossRef
85.
Zurück zum Zitat Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99. Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.
86.
Zurück zum Zitat Moore AM, et al. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–34.PubMedCrossRef Moore AM, et al. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–34.PubMedCrossRef
87.
Zurück zum Zitat Santosa KB, et al. Nerve allografts supplemented with Schwann cells overexpressing glial-cell-line-derived neurotrophic factor. Muscle Nerve. 2013;47(2):213–23.PubMedCrossRef Santosa KB, et al. Nerve allografts supplemented with Schwann cells overexpressing glial-cell-line-derived neurotrophic factor. Muscle Nerve. 2013;47(2):213–23.PubMedCrossRef
89.
Zurück zum Zitat Lyons DA, et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol. 2005;15(6):513–24.PubMedCrossRef Lyons DA, et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol. 2005;15(6):513–24.PubMedCrossRef
90.
Zurück zum Zitat Kazakova N, et al. A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol. 2006;297(1):1–13.PubMedCrossRef Kazakova N, et al. A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol. 2006;297(1):1–13.PubMedCrossRef
91.
Zurück zum Zitat Martini R, Xin Y, Schachner M. Restricted localization of L1 and N-CAM at sites of contact between Schwann cells and neurites in culture. Glia. 1994;10(1):70–4.PubMedCrossRef Martini R, Xin Y, Schachner M. Restricted localization of L1 and N-CAM at sites of contact between Schwann cells and neurites in culture. Glia. 1994;10(1):70–4.PubMedCrossRef
92.
Zurück zum Zitat Akassoglou K, et al. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002;33(6):861–75.PubMedCrossRef Akassoglou K, et al. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002;33(6):861–75.PubMedCrossRef
93.
Zurück zum Zitat Mosahebi A, et al. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173(2):213–23.PubMedCrossRef Mosahebi A, et al. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173(2):213–23.PubMedCrossRef
94.
Zurück zum Zitat Bunge RP, Bunge MB, Eldridge CF. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–28.PubMedCrossRef Bunge RP, Bunge MB, Eldridge CF. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–28.PubMedCrossRef
95.
Zurück zum Zitat Friedman B, et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron. 1992;9(2):295–305.PubMedCrossRef Friedman B, et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron. 1992;9(2):295–305.PubMedCrossRef
96.
Zurück zum Zitat Bunge RP. The role of the Schwann cell in trophic support and regeneration. J Neurol. 1994;242(1 Suppl 1):S19–21.PubMedCrossRef Bunge RP. The role of the Schwann cell in trophic support and regeneration. J Neurol. 1994;242(1 Suppl 1):S19–21.PubMedCrossRef
97.
Zurück zum Zitat Levi AD, Bunge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol. 1994;130(1):41–52.PubMedCrossRef Levi AD, Bunge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol. 1994;130(1):41–52.PubMedCrossRef
98.
Zurück zum Zitat Araki T, Milbrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron. 1996;17(2):353–61.PubMedCrossRef Araki T, Milbrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron. 1996;17(2):353–61.PubMedCrossRef
­­99.
Zurück zum Zitat Hall SM. The effect of inhibiting Schwann cell mitosis on the reinnervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol Appl Neurobiol. 1986;12(4):401–14.PubMedCrossRef Hall SM. The effect of inhibiting Schwann cell mitosis on the reinnervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol Appl Neurobiol. 1986;12(4):401–14.PubMedCrossRef
100.
Zurück zum Zitat Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol. 1986;12(1):27–46.PubMedCrossRef Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol. 1986;12(1):27–46.PubMedCrossRef
101.
Zurück zum Zitat Wood PM. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 1976;115(3):361–75.PubMedCrossRef Wood PM. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 1976;115(3):361–75.PubMedCrossRef
102.
Zurück zum Zitat Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979;165(1):105–18.PubMedCrossRef Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979;165(1):105–18.PubMedCrossRef
103.
Zurück zum Zitat Paino CL, et al. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol. 1994;23(7):433–52.PubMedCrossRef Paino CL, et al. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol. 1994;23(7):433–52.PubMedCrossRef
104.
Zurück zum Zitat Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett. 2009;456(3):124–32.PubMedCrossRef Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett. 2009;456(3):124–32.PubMedCrossRef
105.
Zurück zum Zitat Guenard V, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci. 1992;12(9):3310–20.PubMed Guenard V, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci. 1992;12(9):3310–20.PubMed
106.
Zurück zum Zitat Kim DH, et al. Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. J Neurosurg. 1994;80(2):254–60.PubMedCrossRef Kim DH, et al. Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. J Neurosurg. 1994;80(2):254–60.PubMedCrossRef
107.
Zurück zum Zitat Levi AD, et al. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14(3 Pt 1):1309–19.PubMed Levi AD, et al. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14(3 Pt 1):1309–19.PubMed
108.
Zurück zum Zitat Ogden MA, et al. Safe injection of cultured Schwann cells into peripheral nerve allografts. Microsurgery. 2000;20(7):314–23.PubMedCrossRef Ogden MA, et al. Safe injection of cultured Schwann cells into peripheral nerve allografts. Microsurgery. 2000;20(7):314–23.PubMedCrossRef
109.
Zurück zum Zitat Brenner MJ, et al. Effects of Schwann cells and donor antigen on long-nerve allograft regeneration. Microsurgery. 2005;25(1):61–70.PubMedCrossRef Brenner MJ, et al. Effects of Schwann cells and donor antigen on long-nerve allograft regeneration. Microsurgery. 2005;25(1):61–70.PubMedCrossRef
110.
Zurück zum Zitat Fox IK, et al. Schwann cell injection of cold-preserved nerve allografts. Microsurgery. 2005;25(6):502–7.PubMedCrossRef Fox IK, et al. Schwann cell injection of cold-preserved nerve allografts. Microsurgery. 2005;25(6):502–7.PubMedCrossRef
111.
Zurück zum Zitat Hu J, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol. 2007;204(2):658–66.PubMedCrossRef Hu J, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol. 2007;204(2):658–66.PubMedCrossRef
112.
Zurück zum Zitat Aszmann OC, et al. Bridging critical nerve defects through an acellular homograft seeded with autologous Schwann cells obtained from a regeneration neuroma of the proximal stump. J Reconstr Microsurg. 2008;24(3):151–8.PubMedCrossRef Aszmann OC, et al. Bridging critical nerve defects through an acellular homograft seeded with autologous Schwann cells obtained from a regeneration neuroma of the proximal stump. J Reconstr Microsurg. 2008;24(3):151–8.PubMedCrossRef
113.
Zurück zum Zitat Jessen KR, Mirsky R, Morgan L. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves. J Neurosci. 1987;7(10):3362–9.PubMed Jessen KR, Mirsky R, Morgan L. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves. J Neurosci. 1987;7(10):3362–9.PubMed
114.
Zurück zum Zitat Seilheimer B, Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol. 1988;107(1):341–51.PubMedCrossRef Seilheimer B, Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol. 1988;107(1):341–51.PubMedCrossRef
115.
Zurück zum Zitat Acheson A, et al. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron. 1991;7(2):265–75.PubMedCrossRef Acheson A, et al. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron. 1991;7(2):265–75.PubMedCrossRef
116.
Zurück zum Zitat Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol. 1993;3(5):805–9.PubMedCrossRef Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol. 1993;3(5):805–9.PubMedCrossRef
117.
Zurück zum Zitat Xu XM, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol. 1995;351(1):145–60.PubMedCrossRef Xu XM, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol. 1995;351(1):145–60.PubMedCrossRef
118.
Zurück zum Zitat Li Y, Raisman G. Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord. Exp Neurol. 1997;145(2 Pt 1):397–411.PubMedCrossRef Li Y, Raisman G. Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord. Exp Neurol. 1997;145(2 Pt 1):397–411.PubMedCrossRef
119.
Zurück zum Zitat Fansa H, et al. Successful implantation of Schwann cells in acellular muscles. J Reconstr Microsurg. 1999;15(1):61–5.PubMedCrossRef Fansa H, et al. Successful implantation of Schwann cells in acellular muscles. J Reconstr Microsurg. 1999;15(1):61–5.PubMedCrossRef
120.
Zurück zum Zitat Morrissey TK, Kleitman N, Bunge RP. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci. 1991;11(8):2433–42.PubMed Morrissey TK, Kleitman N, Bunge RP. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci. 1991;11(8):2433–42.PubMed
121.
Zurück zum Zitat Levi AD, et al. The influence of heregulins on human Schwann cell proliferation. J Neurosci. 1995;15(2):1329–40.PubMed Levi AD, et al. The influence of heregulins on human Schwann cell proliferation. J Neurosci. 1995;15(2):1329–40.PubMed
122.
Zurück zum Zitat Mathon NF, et al. Lack of replicative senescence in normal rodent glia. Science. 2001;291(5505):872–5.PubMedCrossRef Mathon NF, et al. Lack of replicative senescence in normal rodent glia. Science. 2001;291(5505):872–5.PubMedCrossRef
123.
Zurück zum Zitat Emery E, et al. Assessment of the malignant potential of mitogen stimulated human Schwann cells. J Peripher Nerv Syst. 1999;4(2):107–16.PubMed Emery E, et al. Assessment of the malignant potential of mitogen stimulated human Schwann cells. J Peripher Nerv Syst. 1999;4(2):107–16.PubMed
124.
Zurück zum Zitat Atkins S, et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport. 2006;17(12):1245–9.PubMedCrossRef Atkins S, et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport. 2006;17(12):1245–9.PubMedCrossRef
125.
Zurück zum Zitat Needham LK, Tennekoon GI, McKhann GM. Selective growth of rat Schwann cells in neuron- and serum-free primary culture. J Neurosci. 1987;7(1):1–9.PubMed Needham LK, Tennekoon GI, McKhann GM. Selective growth of rat Schwann cells in neuron- and serum-free primary culture. J Neurosci. 1987;7(1):1–9.PubMed
126.
Zurück zum Zitat Levi AD. Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods. 1996;68(1):21–6.PubMedCrossRef Levi AD. Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods. 1996;68(1):21–6.PubMedCrossRef
127.
Zurück zum Zitat Keilhoff G, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods. 1999;89(1):17–24.PubMedCrossRef Keilhoff G, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods. 1999;89(1):17–24.PubMedCrossRef
128.
Zurück zum Zitat Verdu E, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves. J Neurosci Methods. 2000;99(1–2):111–7.PubMedCrossRef Verdu E, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves. J Neurosci Methods. 2000;99(1–2):111–7.PubMedCrossRef
129.
Zurück zum Zitat Calderon-Martinez D, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J Neurosci Methods. 2002;114(1):1–8.PubMedCrossRef Calderon-Martinez D, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J Neurosci Methods. 2002;114(1):1–8.PubMedCrossRef
130.
Zurück zum Zitat Vroemen M, Weidner N. Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods. 2003;124(2):135–43.PubMedCrossRef Vroemen M, Weidner N. Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods. 2003;124(2):135–43.PubMedCrossRef
131.
Zurück zum Zitat Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.PubMedCrossRef Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.PubMedCrossRef
132.
Zurück zum Zitat Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedCrossRef Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedCrossRef
133.
Zurück zum Zitat Itskovitz-Eldor J, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.PubMed Itskovitz-Eldor J, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.PubMed
134.
Zurück zum Zitat Nussbaum J, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J. 2007;21(7):1345–57.PubMedCrossRef Nussbaum J, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J. 2007;21(7):1345–57.PubMedCrossRef
135.
Zurück zum Zitat Amariglio N, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.PubMedCrossRef Amariglio N, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.PubMedCrossRef
136.
Zurück zum Zitat Bain G, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168(2):342–57.PubMedCrossRef Bain G, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168(2):342–57.PubMedCrossRef
137.
Zurück zum Zitat Cui L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356–65.PubMedCrossRef Cui L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356–65.PubMedCrossRef
138.
Zurück zum Zitat Willerth SM, et al. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells. 2007;25(9):2235–44.PubMedCrossRef Willerth SM, et al. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells. 2007;25(9):2235–44.PubMedCrossRef
139.
Zurück zum Zitat Ziegler L, et al. Efficient generation of Schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev. 2011;7(2):394–403.PubMedCrossRef Ziegler L, et al. Efficient generation of Schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev. 2011;7(2):394–403.PubMedCrossRef
140.
Zurück zum Zitat Liu Q, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med. 2012;1(4):266–78.PubMedCrossRef Liu Q, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med. 2012;1(4):266–78.PubMedCrossRef
141.
Zurück zum Zitat Lee EJ, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33(29):7039–46.PubMedCrossRef Lee EJ, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33(29):7039–46.PubMedCrossRef
142.
Zurück zum Zitat Johnson PJ, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010;6(20):5127–37.PubMedCrossRef Johnson PJ, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010;6(20):5127–37.PubMedCrossRef
143.
Zurück zum Zitat Dawson TM, et al. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci U S A. 1993;90(21):9808–12.PubMedCrossRef Dawson TM, et al. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci U S A. 1993;90(21):9808–12.PubMedCrossRef
144.
Zurück zum Zitat Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci. 1995;15(11):7509–16.PubMed Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci. 1995;15(11):7509–16.PubMed
145.
Zurück zum Zitat Madsen JR, et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp Neurol. 1998;154(2):673–83.PubMedCrossRef Madsen JR, et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp Neurol. 1998;154(2):673–83.PubMedCrossRef
146.
Zurück zum Zitat Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103(7):1928–36.PubMedCrossRef Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103(7):1928–36.PubMedCrossRef
147.
Zurück zum Zitat Gold BG. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab Rev. 1999;31(3):649–63.PubMedCrossRef Gold BG. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab Rev. 1999;31(3):649–63.PubMedCrossRef
148.
Zurück zum Zitat Lee M, et al. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve. 2000;23(4):633–40.PubMedCrossRef Lee M, et al. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve. 2000;23(4):633–40.PubMedCrossRef
149.
Zurück zum Zitat Feng FY, et al. FK506 rescues peripheral nerve allografts in acute rejection. J Neurotrauma. 2001;18(2):217–29.PubMedCrossRef Feng FY, et al. FK506 rescues peripheral nerve allografts in acute rejection. J Neurotrauma. 2001;18(2):217–29.PubMedCrossRef
150.
Zurück zum Zitat Chunasuwankul R, et al. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. Int Surg. 2002;87(4):274–8.PubMed Chunasuwankul R, et al. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. Int Surg. 2002;87(4):274–8.PubMed
151.
Zurück zum Zitat Udina E, et al. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle Nerve. 2002;26(3):348–55.PubMedCrossRef Udina E, et al. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle Nerve. 2002;26(3):348–55.PubMedCrossRef
152.
Zurück zum Zitat Sobol JB, et al. Effects of delaying FK506 administration on neuroregeneration in a rodent model. J Reconstr Microsurg. 2003;19(2):113–8.PubMedCrossRef Sobol JB, et al. Effects of delaying FK506 administration on neuroregeneration in a rodent model. J Reconstr Microsurg. 2003;19(2):113–8.PubMedCrossRef
153.
Zurück zum Zitat Udina E, et al. FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers. Exp Neurol. 2003;183(1):220–31.PubMedCrossRef Udina E, et al. FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers. Exp Neurol. 2003;183(1):220–31.PubMedCrossRef
154.
Zurück zum Zitat Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve. 2004;29(6):812–22.PubMedCrossRef Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve. 2004;29(6):812–22.PubMedCrossRef
155.
Zurück zum Zitat Brenner MJ, et al. FK506 and anti-CD40 ligand in peripheral nerve allotransplantation. Restor Neurol Neurosci. 2005;23(3–4):237–49.PubMed Brenner MJ, et al. FK506 and anti-CD40 ligand in peripheral nerve allotransplantation. Restor Neurol Neurosci. 2005;23(3–4):237–49.PubMed
156.
Zurück zum Zitat Jensen JN, et al. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine. Ann Plast Surg. 2005;54(4):420–7.PubMedCrossRef Jensen JN, et al. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine. Ann Plast Surg. 2005;54(4):420–7.PubMedCrossRef
157.
Zurück zum Zitat Sun HH, et al. Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience. 2012;223:114–23.PubMedCrossRef Sun HH, et al. Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience. 2012;223:114–23.PubMedCrossRef
158.
Zurück zum Zitat Yan Y, et al. Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 2012;26(6):570–80.PubMedCrossRef Yan Y, et al. Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 2012;26(6):570–80.PubMedCrossRef
159.
Zurück zum Zitat Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRef Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRef
160.
Zurück zum Zitat Sheng Z, et al. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009;17(3):427–35.PubMedCrossRef Sheng Z, et al. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009;17(3):427–35.PubMedCrossRef
161.
Zurück zum Zitat Orlic D, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.PubMedCrossRef Orlic D, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.PubMedCrossRef
162.
Zurück zum Zitat Oswald J, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.PubMedCrossRef Oswald J, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.PubMedCrossRef
163.
Zurück zum Zitat Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.PubMedCrossRef Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.PubMedCrossRef
164.
Zurück zum Zitat Hofstetter CP, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A. 2002;99(4):2199–204.PubMedCrossRef Hofstetter CP, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A. 2002;99(4):2199–204.PubMedCrossRef
165.
Zurück zum Zitat Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRef Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRef
166.
Zurück zum Zitat Tohill M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.PubMedCrossRef Tohill M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.PubMedCrossRef
167.
Zurück zum Zitat Shah NM, et al. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994;77(3):349–60.PubMedCrossRef Shah NM, et al. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994;77(3):349–60.PubMedCrossRef
168.
Zurück zum Zitat Caddick J, et al. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia. 2006;54(8):840–9.PubMedCrossRef Caddick J, et al. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia. 2006;54(8):840–9.PubMedCrossRef
169.
Zurück zum Zitat Keilhoff G, et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol. 2006;85(1):11–24.PubMedCrossRef Keilhoff G, et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol. 2006;85(1):11–24.PubMedCrossRef
170.
Zurück zum Zitat Keilhoff G, et al. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006;12(6):1451–65.PubMedCrossRef Keilhoff G, et al. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006;12(6):1451–65.PubMedCrossRef
171.
Zurück zum Zitat Keilhoff G, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26(7–8):1235–52.PubMed Keilhoff G, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26(7–8):1235–52.PubMed
172.
Zurück zum Zitat Mahay D, Terenghi G, Shawcross SG. Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res. 2008;314(14):2692–701.PubMedCrossRef Mahay D, Terenghi G, Shawcross SG. Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res. 2008;314(14):2692–701.PubMedCrossRef
173.
Zurück zum Zitat Mahay D, Terenghi G, Shawcross SG. Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem. 2008;51(Pt 4):167–76.PubMedCrossRef Mahay D, Terenghi G, Shawcross SG. Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem. 2008;51(Pt 4):167–76.PubMedCrossRef
174.
Zurück zum Zitat Brohlin M, et al. Characterization of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res. 2009;64(1):41–9.PubMedCrossRef Brohlin M, et al. Characterization of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res. 2009;64(1):41–9.PubMedCrossRef
175.
Zurück zum Zitat Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. Faseb J. 2004;18(9):980–2.PubMed Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. Faseb J. 2004;18(9):980–2.PubMed
176.
Zurück zum Zitat Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS. 2005;113(11–12):831–44.PubMedCrossRef Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS. 2005;113(11–12):831–44.PubMedCrossRef
177.
Zurück zum Zitat Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–2902.PubMedCrossRef Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–2902.PubMedCrossRef
178.
Zurück zum Zitat Shea GK, et al. Bone marrow-derived Schwann cells achieve fate commitment—a prerequisite for remyelination therapy. Exp Neurol. 2010;224(2):448–58.PubMedCrossRef Shea GK, et al. Bone marrow-derived Schwann cells achieve fate commitment—a prerequisite for remyelination therapy. Exp Neurol. 2010;224(2):448–58.PubMedCrossRef
179.
Zurück zum Zitat Hollenberg CH, Vost A. Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 1969;47(11):2485–98.PubMedCrossRef Hollenberg CH, Vost A. Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 1969;47(11):2485–98.PubMedCrossRef
180.
Zurück zum Zitat Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest. 1976;58(3):699–704.PubMedCrossRef Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest. 1976;58(3):699–704.PubMedCrossRef
181.
Zurück zum Zitat Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9.PubMedCrossRef Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9.PubMedCrossRef
182.
Zurück zum Zitat Strem BM, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.PubMedCrossRef Strem BM, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.PubMedCrossRef
183.
Zurück zum Zitat De Ugarte DA, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.PubMedCrossRef De Ugarte DA, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.PubMedCrossRef
184.
Zurück zum Zitat Aust L, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.PubMedCrossRef Aust L, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.PubMedCrossRef
185.
Zurück zum Zitat Kingham PJ, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.PubMedCrossRef Kingham PJ, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.PubMedCrossRef
186.
Zurück zum Zitat Xu Y, et al. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008;1239:49–55.PubMedCrossRef Xu Y, et al. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008;1239:49–55.PubMedCrossRef
187.
Zurück zum Zitat Radtke C, et al. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci. 2009;27(8):817–23.PubMedCrossRef Radtke C, et al. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci. 2009;27(8):817–23.PubMedCrossRef
188.
Zurück zum Zitat Chi GF, et al. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol. 2010;222(2):304–17.PubMedCrossRef Chi GF, et al. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol. 2010;222(2):304–17.PubMedCrossRef
189.
Zurück zum Zitat Mantovani C, et al. Bone marrow- and adipose-derived stem cells show expression of myelin mRNAs and proteins. Regen Med. 2010;5(3):403–10.PubMedCrossRef Mantovani C, et al. Bone marrow- and adipose-derived stem cells show expression of myelin mRNAs and proteins. Regen Med. 2010;5(3):403–10.PubMedCrossRef
190.
Zurück zum Zitat di Summa PG, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278–91.PubMedCrossRef di Summa PG, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278–91.PubMedCrossRef
191.
Zurück zum Zitat Erba P, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–7.PubMedCrossRef Erba P, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–7.PubMedCrossRef
192.
Zurück zum Zitat Kruger GM, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.PubMedCrossRef Kruger GM, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.PubMedCrossRef
193.
Zurück zum Zitat Toma JG, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84.PubMedCrossRef Toma JG, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84.PubMedCrossRef
194.
Zurück zum Zitat Li L, et al. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003;100(17):9958–61.PubMedCrossRef Li L, et al. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003;100(17):9958–61.PubMedCrossRef
195.
Zurück zum Zitat Fernandes KJ, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–13.PubMedCrossRef Fernandes KJ, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–13.PubMedCrossRef
196.
Zurück zum Zitat Sieber-Blum M, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2):258–69.PubMedCrossRef Sieber-Blum M, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2):258–69.PubMedCrossRef
197.
Zurück zum Zitat Amoh Y, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102(15):5530–4.PubMedCrossRef Amoh Y, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102(15):5530–4.PubMedCrossRef
198.
Zurück zum Zitat Amoh Y, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005;102(49):17734–8.PubMedCrossRef Amoh Y, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005;102(49):17734–8.PubMedCrossRef
199.
Zurück zum Zitat McKenzie IA, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60.PubMedCrossRef McKenzie IA, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60.PubMedCrossRef
200.
Zurück zum Zitat Walsh S, et al. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience. 2009;164(3):1097–107.PubMedCrossRef Walsh S, et al. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience. 2009;164(3):1097–107.PubMedCrossRef
201.
Zurück zum Zitat Walsh SK, et al. Fate of stem cell transplants in peripheral nerves. Stem Cell Res. 2012;8(2):226–38.PubMedCrossRef Walsh SK, et al. Fate of stem cell transplants in peripheral nerves. Stem Cell Res. 2012;8(2):226–38.PubMedCrossRef
202.
Zurück zum Zitat Johnson PJ, et al. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant. 2010;19(1):89–101.PubMedCrossRef Johnson PJ, et al. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant. 2010;19(1):89–101.PubMedCrossRef
203.
Zurück zum Zitat Trupp M, et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol. 1995;130(1):137–48.PubMedCrossRef Trupp M, et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol. 1995;130(1):137–48.PubMedCrossRef
204.
Zurück zum Zitat Naveilhan P, ElShamy WM, Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci. 1997;9(7):1450–60.PubMedCrossRef Naveilhan P, ElShamy WM, Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci. 1997;9(7):1450–60.PubMedCrossRef
205.
Zurück zum Zitat Hammarberg H, et al. Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. J Comp Neurol. 2000;426(4):587–601.PubMedCrossRef Hammarberg H, et al. Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. J Comp Neurol. 2000;426(4):587–601.PubMedCrossRef
206.
Zurück zum Zitat Sun Y, et al. Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury. Sheng Li Xue Bao. 2003;55(3):349–54.PubMed Sun Y, et al. Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury. Sheng Li Xue Bao. 2003;55(3):349–54.PubMed
207.
Zurück zum Zitat Lie DC, Weis J. GDNF expression is increased in denervated human skeletal muscle. Neurosci Lett. 1998;250(2):87–90.PubMedCrossRef Lie DC, Weis J. GDNF expression is increased in denervated human skeletal muscle. Neurosci Lett. 1998;250(2):87–90.PubMedCrossRef
208.
Zurück zum Zitat Zhao C, et al. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma. 2004;21(10):1468–78.PubMedCrossRef Zhao C, et al. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma. 2004;21(10):1468–78.PubMedCrossRef
209.
Zurück zum Zitat Eggers R, et al. A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol. 2010;223(1):207–20.PubMedCrossRef Eggers R, et al. A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol. 2010;223(1):207–20.PubMedCrossRef
210.
Zurück zum Zitat Hoke A, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol. 2002;173(1):77–85.PubMedCrossRef Hoke A, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol. 2002;173(1):77–85.PubMedCrossRef
211.
Zurück zum Zitat Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183(2):610–9.PubMedCrossRef Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183(2):610–9.PubMedCrossRef
212.
Zurück zum Zitat Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324.PubMedCrossRef Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324.PubMedCrossRef
213.
Zurück zum Zitat Santos AR Jr, et al. Differential Schwann cell migration in adult and old mice: an in vitro study. Brain Res. 2000;881(1):73–6.PubMedCrossRef Santos AR Jr, et al. Differential Schwann cell migration in adult and old mice: an in vitro study. Brain Res. 2000;881(1):73–6.PubMedCrossRef
214.
Zurück zum Zitat Young C, et al. Nerve growth factor and neurotrophin-3 affect functional recovery following peripheral nerve injury differently. Restor Neurol Neurosci. 2001;18(4):167–75.PubMed Young C, et al. Nerve growth factor and neurotrophin-3 affect functional recovery following peripheral nerve injury differently. Restor Neurol Neurosci. 2001;18(4):167–75.PubMed
215.
Zurück zum Zitat Wong LF, et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther. 2006;17(1):1–9.PubMedCrossRef Wong LF, et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther. 2006;17(1):1–9.PubMedCrossRef
216.
Zurück zum Zitat Hendriks WT, et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restor Neurol Neurosci. 2007;25(5–6):585–99.PubMed Hendriks WT, et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restor Neurol Neurosci. 2007;25(5–6):585–99.PubMed
217.
Zurück zum Zitat Tannemaat MR, et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28(8):1467–79.PubMedCrossRef Tannemaat MR, et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28(8):1467–79.PubMedCrossRef
218.
Zurück zum Zitat Blits B, et al. Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol. 2004;189(2):303–16.PubMedCrossRef Blits B, et al. Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol. 2004;189(2):303–16.PubMedCrossRef
219.
Zurück zum Zitat Shakhbazau A, et al. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci. 2012;50(1):103–12.PubMedCrossRef Shakhbazau A, et al. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci. 2012;50(1):103–12.PubMedCrossRef
220.
Zurück zum Zitat Hare GM, et al. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992;89(2):251–8.PubMedCrossRef Hare GM, et al. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992;89(2):251–8.PubMedCrossRef
221.
Zurück zum Zitat Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.PubMedCrossRef Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.PubMedCrossRef
Metadaten
Titel
Tissue engineered constructs for peripheral nerve surgery
verfasst von
Asst. Prof. P. J. Johnson, PhD
M. D. Wood, PhD
A. M . Moore, MD
S. E. Mackinnon, MD
Publikationsdatum
01.06.2013
Verlag
Springer Vienna
Erschienen in
European Surgery / Ausgabe 3/2013
Print ISSN: 1682-8631
Elektronische ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-013-0205-0

Weitere Artikel der Ausgabe 3/2013

European Surgery 3/2013 Zur Ausgabe