Skip to main content
Erschienen in: memo - Magazine of European Medical Oncology 3/2018

17.01.2018 | review

Role of complement in the pathogenesis of thrombotic microangiopathies

verfasst von: Eszter Trojnár, Ágnes Szilágyi, Bálint Mikes, Dorottya Csuka, György Sinkovits, Prof. Zoltán Prohászka

Erschienen in: memo - Magazine of European Medical Oncology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Summary

Thrombotic microangiopathies (TMAs) are rare but life-threatening disorders characterized by microvascular hemolytic anemia and acute thrombocytopenia with or without organ damage. The term TMA covers various subgroups of diseases, the pathogenesis of which is briefly summarized in this review. As highlighted here, complement activation may represent an important amalgamating process in all of these conditions, since it is able to link together activation and damage of multiple involved cell types, such as endothelial cells, platelets, and neutrophils.
Literatur
1.
Zurück zum Zitat Warwicker P, et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 1998;53(4):836–44.CrossRefPubMed Warwicker P, et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 1998;53(4):836–44.CrossRefPubMed
2.
Zurück zum Zitat Szarvas N, et al. Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol. 2016;71:10–22.CrossRefPubMed Szarvas N, et al. Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol. 2016;71:10–22.CrossRefPubMed
3.
Zurück zum Zitat Caprioli J, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.CrossRefPubMedPubMedCentral Caprioli J, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Westra D, et al. Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H‑related 5 gene. J Hum Genet. 2012;57(7):459–64.CrossRefPubMedPubMedCentral Westra D, et al. Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H‑related 5 gene. J Hum Genet. 2012;57(7):459–64.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Jozsi M, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.CrossRefPubMed Jozsi M, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.CrossRefPubMed
7.
Zurück zum Zitat Thurman JM, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.CrossRefPubMedPubMedCentral Thurman JM, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Stahl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood. 2011;117(20):5503–13.CrossRefPubMed Stahl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood. 2011;117(20):5503–13.CrossRefPubMed
9.
Zurück zum Zitat Westra D, et al. Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol. 2017;32(2):297–309.CrossRefPubMed Westra D, et al. Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol. 2017;32(2):297–309.CrossRefPubMed
10.
Zurück zum Zitat Orth D, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182(10):6394–400.CrossRefPubMed Orth D, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182(10):6394–400.CrossRefPubMed
11.
Zurück zum Zitat Arvidsson I, et al. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol. 2015;194(5):2309–18.CrossRefPubMed Arvidsson I, et al. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol. 2015;194(5):2309–18.CrossRefPubMed
12.
Zurück zum Zitat Morigi M, et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol. 2011;187(1):172–80.CrossRefPubMed Morigi M, et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol. 2011;187(1):172–80.CrossRefPubMed
13.
14.
Zurück zum Zitat Bettoni S, et al. Interaction between multimeric von Willebrand factor and complement: a fresh look to the pathophysiology of microvascular thrombosis. J Immunol. 2017;199(3):1021–40.CrossRefPubMed Bettoni S, et al. Interaction between multimeric von Willebrand factor and complement: a fresh look to the pathophysiology of microvascular thrombosis. J Immunol. 2017;199(3):1021–40.CrossRefPubMed
15.
Zurück zum Zitat Reti M, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.CrossRefPubMed Reti M, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.CrossRefPubMed
16.
17.
Zurück zum Zitat Mikes B, et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133(4):616–21.CrossRefPubMed Mikes B, et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133(4):616–21.CrossRefPubMed
18.
Zurück zum Zitat Ruiz-Torres MP, et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb Haemost. 2005;93(3):443–52.PubMedCrossRef Ruiz-Torres MP, et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb Haemost. 2005;93(3):443–52.PubMedCrossRef
19.
Zurück zum Zitat Jodele S, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7.CrossRefPubMedPubMedCentral Jodele S, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gloude NJ, et al. Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD. Blood. 2017;130(10):1259–66.CrossRefPubMedPubMedCentral Gloude NJ, et al. Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD. Blood. 2017;130(10):1259–66.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Yuen J, et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front Immunol. 2016;7:137.CrossRefPubMedPubMedCentral Yuen J, et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front Immunol. 2016;7:137.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Farkas P, et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27.CrossRefPubMed Farkas P, et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27.CrossRefPubMed
23.
Zurück zum Zitat Cofiell R, et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood. 2015;125(21):3253–62.CrossRefPubMedPubMedCentral Cofiell R, et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood. 2015;125(21):3253–62.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Azukaitis K, et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase epsilon. J Am Soc Nephrol. 2017;28(10):3066–75.CrossRefPubMedPubMedCentral Azukaitis K, et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase epsilon. J Am Soc Nephrol. 2017;28(10):3066–75.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Leffler J, et al. Decreased neutrophil extracellular trap degradation in Shiga toxin-associated haemolytic uraemic syndrome. J Innate Immun. 2017;9(1):12–21.CrossRefPubMed Leffler J, et al. Decreased neutrophil extracellular trap degradation in Shiga toxin-associated haemolytic uraemic syndrome. J Innate Immun. 2017;9(1):12–21.CrossRefPubMed
27.
Zurück zum Zitat Lukasz A, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in patients with Shiga toxin mediated haemolytic uraemic syndrome (STEC-HUS). Thromb Haemost. 2014;111(2):365–72.CrossRefPubMed Lukasz A, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in patients with Shiga toxin mediated haemolytic uraemic syndrome (STEC-HUS). Thromb Haemost. 2014;111(2):365–72.CrossRefPubMed
28.
Zurück zum Zitat Huang DT, et al. T‑antigen activation for prediction of pneumococcus-induced hemolytic uremic syndrome and hemolytic anemia. Pediatr Infect Dis J. 2006;25(7):608–10.CrossRefPubMed Huang DT, et al. T‑antigen activation for prediction of pneumococcus-induced hemolytic uremic syndrome and hemolytic anemia. Pediatr Infect Dis J. 2006;25(7):608–10.CrossRefPubMed
29.
Zurück zum Zitat Szilagyi A, et al. The use of a rapid fluorogenic neuraminidase assay to differentiate acute streptococcus pneumoniae-associated hemolytic uremic syndrome (HUS) from other forms of HUS. Clin Chem Lab Med. 2015;53(4):e117–e9.CrossRefPubMed Szilagyi A, et al. The use of a rapid fluorogenic neuraminidase assay to differentiate acute streptococcus pneumoniae-associated hemolytic uremic syndrome (HUS) from other forms of HUS. Clin Chem Lab Med. 2015;53(4):e117–e9.CrossRefPubMed
30.
Zurück zum Zitat Mikes B, et al. Carboxiterminal pro-endothelin-1 as an endothelial cell biomarker in thrombotic thrombocytopenic purpura. Thromb Haemost. 2016;115(5):1034–43.CrossRefPubMed Mikes B, et al. Carboxiterminal pro-endothelin-1 as an endothelial cell biomarker in thrombotic thrombocytopenic purpura. Thromb Haemost. 2016;115(5):1034–43.CrossRefPubMed
31.
Zurück zum Zitat Bettoni G, et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(8):1556–65.CrossRefPubMed Bettoni G, et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(8):1556–65.CrossRefPubMed
Metadaten
Titel
Role of complement in the pathogenesis of thrombotic microangiopathies
verfasst von
Eszter Trojnár
Ágnes Szilágyi
Bálint Mikes
Dorottya Csuka
György Sinkovits
Prof. Zoltán Prohászka
Publikationsdatum
17.01.2018
Verlag
Springer Vienna
Erschienen in
memo - Magazine of European Medical Oncology / Ausgabe 3/2018
Print ISSN: 1865-5041
Elektronische ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-017-0380-y

Weitere Artikel der Ausgabe 3/2018

memo - Magazine of European Medical Oncology 3/2018 Zur Ausgabe