Skip to main content
Erschienen in: Wiener klinische Wochenschrift 13-14/2021

Open Access 30.03.2021 | original article

Risk factors for mortality in infants with congenital diaphragmatic hernia: a single center experience

verfasst von: Jennifer Bettina Brandt, MD, Tobias Werther, MD, Erika Groth, Erik Küng, MD, Johann Golej, MD, Angelika Berger, MD, MBA

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 13-14/2021

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Summary

Background

Despite current progress in research of congenital diaphragmatic hernia, its management remains challenging, requiring an interdisciplinary team for optimal treatment.

Objective

Aim of the present study was to evaluate potential risk factors for mortality of infants with congenital diaphragmatic hernia.

Methods

A single-center chart review of all patients treated with congenital diaphragmatic hernia over a period of 16 years, at the Medical University of Vienna, was performed. A comparison of medical parameters between survivors and non-survivors, as well as to published literature was conducted.

Results

During the observational period 66 patients were diagnosed with congenital diaphragmatic hernia. Overall survival was 84.6%. Left-sided hernia occurred in 51 patients (78.5%) with a mortality of 7.8%. In comparison, right-sided hernia occurred less frequently (n = 12) but showed a higher mortality (33.3%, p = 0.000). Critically instable patients were provided with venoarterial extracorporeal membrane oxygenation (ECMO, 32.3%, n = 21). Survival rate among these patients was 66.7%. Right-sided hernia, treatment with inhaled nitric oxide (iNO) over 15 days and the use of ECMO over 10 days were significant risk factors for mortality.

Conclusion

The survival rate in this cohort is comparable to the current literature. Parameters such as the side of the diaphragmatic defect, duration of ECMO and inhaled nitric oxide were assessed as mortality risk factors. This analysis of patients with congenital diaphragmatic hernia enhances understanding of risk factors for mortality, helping to improve management and enabling further evaluation in prospective clinical trials.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BW
Birth weight
CDH
Congenital diaphragmatic hernia
GA
Gestational age
ICU
Intensive care unit
iNO
Inhaled nitric oxide
L‑CDH
Left-sided CDH
PH
Pulmonary hypertension
R‑CDH
Right-sided CDH
VA ECMO
Venoarterial extracorporeal membrane oxygenation

Introduction

Congenital diaphragmatic hernia (CDH) occurs in approximately 1 in 2500–5000 live births [1, 2]. Research in animal models has enhanced knowledge of its pathogenesis, involving developmental abnormalities of the pleuroperitoneal fold [3]. Neonates with CDH often present with additional malformations and chromosomal aberrations [4]. Management of these patients is a demanding challenge and requires a multidisciplinary team [5]. Mortality rates of CDH range from 52% to 82%, varying among pediatric centers and depending on various factors and comorbidities [6, 7, 8]. Different risk factors including side of defect, position of liver, necessity of extracorporeal membrane oxygenation (ECMO), pulmonary hypertension (PH) and additional congenital anomalies contribute to the high mortality [2, 9, 10].
The aim of this study was to perform a retrospective chart review of CDH in a single tertiary pediatric center, to analyze risk factors for mortality and to compare the results with the current literature.

Patients and methods

This study was conducted as a single center analysis at the Medical University of Vienna. We performed a retrospective chart review of all infants diagnosed with CDH and treated at our neonatal or pediatric intensive care unit (ICU) between 2000 and 2015, to analyze risk factors for mortality and to compare results with current literature. All participants were born either in this center or another Austrian hospital and were transferred to our department before CDH repair was performed. Primary outcome was survival until discharge from the ICU. We created a retrospective registry including the following demographic and medical parameters: gender, gestational age (GA), birth weight (BW), side of defect, position of liver, length of stay in ICU, presence of additional congenital comorbidities, PH including treatment with inhaled nitric oxide (iNO), timing of surgical intervention, operational technique and surgical complications, as well as necessity and length of ECMO treatment (Medtronic Biomedicus 560 centrifugal pump, Dublin, Ireland).
Descriptive statistics were presented as mean and standard deviation (SD) or range for continuous variables and as absolute and relative frequencies for categorical variables. A data comparison was performed between survivors and non-survivors (until discharge from or death in the ICU). For determination of statistical significance in categorical variables a χ2-test was used, while continuous variables calculations were conducted by using the two-tailed unpaired t-test. Statistical significance was considered to be achieved with a p-value < 0.05. The p-values were not adjusted for multiple testing and have to be interpreted as explorative only. For variables with a p-value < 0.05 in the univariate analysis, relative risk was calculated, using a 2×2 table with Haldane correction as appropriate, unconditional maximum likelihood estimation for confidence intervals and a mid‑P exact test for significance. Univariate analysis and data visualization were performed using the R statistic environment with the ggplot2 package [11, 12]. Data collection was performed in Excel© (Microsoft Cooperation, Albuquerque, New Mexico, United States, Version 15.19.1).

Results

Between 2000 and 2015 a total of 66 patients with CDH were treated in our center. One patient born at 29 weeks GA with 900 g BW, who died on the first day of life due to refractory arterial hypotension was excluded from analyses. Overall survival in our cohort was 84.6%. Comparison of demographic and medical data between survivors (n = 55) and non-survivors (n = 10) is presented in Table 1. One survivor was treated in our ICU for 133 days. This patient was transferred to a German CDH center, while still on the ventilator, at parental request.
Table 1
Characteristics of survivors and non-survivors
Characteristics
Survivors (n = 55)
Non-survivors (n = 10)
p-value
Female, n
24 (43.6)
5 (50)
0.71
Gestational age at birth, weeks (SD)
37.6 (1.9)
37.2 (2.3)
0.48
Birth weight, g (SD)
2949 (570)
2406 (541)
0.56
Vaginal delivery, n a
14 (25.5)
0 (0)
0.09
Out-born, n
20 (36.4)
4 (40)
0.83
Length of stay in ICU, days (SD)
16.9 (23.6)
17.7 (14.2)
0.31
Anomalies
L‑CDH, n
47 (85.5)
4 (40)
< 0.001
Intrathoracic liver, n b
28 (50.9)
8 (80)
0.04
Comorbidities, n
16 (29.1)
3 (30)
1.00
 Chromosomal aberrations, n
2 (3.6)
0 (0)
0.83
 Cardiac defects, n
9 (16.4)
2 (20)
0.67
 Other comorbidities, n
5 (9.1)
1 (10)
1.00
PH and ventilation
Ventilation, days (SD)
17.4 (22.4)
17.7 (14.2)
0.19
Pulmonary hypertension, n
37 (67.3)
10 (100)
0.03
iNO, n
37 (67.3)
10 (100)
0.03
Duration of iNO treatment, days (SD)
4.5 (6.8)
14.7 (14.3)
0.02
ECMO
VA-ECMO, n
14 (25.5)
7 (70)
0.01
ECMO treatment, days (SD)
2.4 (4.4)
9.3 (11.1)
0.01
Surgery
Surgical intervention, n c
55 (100)
7 (70)
0.00
Timing of surgery, days (SD)
9.1 (26.6)
10.1 (9)
0.05
Patch, n
18 (32.7)
5 (50)
0.05
Surgical complications, n
8 (14.5)
2 (20)
0.31
Need of reoperation, n
5 (9.1)
2 (20)
0.18
Data are presented as numbers (%) and mean (SD) unless otherwise indicated. P-values were calculated using the χ2-testor the two-tailed unpaired t‑test
n number, SD standard deviation, ICU intensive care unit, L‑CDH left sided congenital diaphragmatic hernia, PH pulmonary hypertension, iNO inhalative nitric oxide, VA-ECMO venoarterial extracorporeal membrane oxygenation
a In 5 patients, mode of delivery could not be determined due to lack of documentation
b For 2 patients no information about the position of liver was available
c In 3 patients no operation was performed. Two patients died due to treatment refractory cardiorespiratory failure (one of them on ECMO) and one patient died on ECMO after severe cerebral hemorrhage, before any surgical intervention was performed
There was no significant difference between survivors and non-survivors with respect to gender, GA, BW, mode of delivery or place of birth (Table 1). Survival of in-born patients was not higher than of out-born patients (n = 35, 85.4% vs. n = 20, 83.3%, p = 0.83). The majority of out-born patients, however, underwent surgical repair by stitch (87.5% vs. 47.4% in the in-born cohort, p = 0.001).
Table 2 gives detailed information about patients with left-sided CDH (L-CDH) and right-sided CDH (R-CDH). Of all patients 51 (78.5%) were diagnosed with L‑CDH and 12 patients (18.5%) with R‑CDH. Mortality in patients with R‑CDH was higher compared to patients with L‑CDH (33.3% versus 7.8%, p = 0.02). Two patients (3%) had defects on both sides; both did not survive (one had a complete aplasia of the diaphragm and died due to bleeding on ECMO and the other patient could not be hemodynamically stabilized despite ECMO treatment).
Table 2
Characteristics of patients with left-sided versus right-sided congenital diaphragmatic hernia
 
L‑CDH (n = 51)
R‑CDH (n = 12)
p-value
Survivors, n
47 (92.2)
8 (66.7)
0.02
Intrathoracic liver, n a
22 (43.1)
12 (100)
0.002
Intra-abdominal liver, n a
27 (52.9)
0 (0)
0.002
Comorbidities, n
13 (25.5)
5 (41.7)
0.30
Cardiac defect, n
7 (13.7)
4 (33.3)
0.20
Pulmonary hypertension, n
35 (68.6)
10 (83.3)
0.31
iNO, n
35 (68.6)
10 (83.3)
0.31
Days of ventilation, mean (SD) b
15.5 (15.6)
27.3 (35.6)
0.02
ECMO, n c
15 (29.4)
5 (41.7)
0.50
Patch repair, n d
16 (31.4)
7 (58.3)
0.09
Stitch repair, n d
34 (66.7)
5 (41.7)
0.09
Data are presented as numbers (percentage) and mean (SD) unless otherwise indicated. P-values were calculated using the χ2-testor the two-tailed unpaired t‑test
n number, SD standard deviation, L‑CDH left sided congenital diaphragmatic hernia, R‑CDH right sided congenital diaphragmatic hernia, ECMO extracorporeal membrane oxygenation
a In 2 patients the position of liver could not be determined; both of them had L‑CDH
b In 4 patients duration of ventilation was missing
c One patient on ECMO had bilateral CDH
d In 3 patients no intervention could be performed, 2 of them had bilateral CDH
Intrathoracic position of the liver was found in 50.9% of survivors as opposed to 80% of non-survivors (p = 0.04). Two patient charts did not contain any information about the position of the liver; both had L‑CDH. All patients with R‑CDH (n = 12) and bilateral hernia (n = 2) had intrathoracic parts of the liver, as opposed to 22 patients (43.1%) with L‑CDH (p = 0.01, Table 2). Out of 36 patients 8 (22.2%) with intrathoracic position of the liver died as opposed to only 1 of 27 (3.7%) patients with an entirely intra-abdominal position of the liver (p = 0.04).
Of the patients 19 (29.2%) had documented comorbidities, 8 patients had various anomalies, including chromosomal anomalies (n = 2), esophageal atresia (n = 1), dysmorphic syndrome (n = 1), fetofetal transfusion syndrome (n = 1), bilateral hydronephrosis with hydroureter (n = 1), a congenital cervical tumor (n = 1), and a congenital cystic adenomatoid malformation (n = 1). The other 11 patients (57.9%) had cardiac malformations: atrial septal defect (n = 8), stenosis of the pulmonary artery (n = 1), pulmonary atresia (n = 1) and aortic isthmus stenosis (n = 1). A cardiac defect was found in 4 out of 12 patients with R‑CDH (33.3%, 50% mortality) and 7 out of 51 patients with L‑CDH (13.7%, 0% mortality, Table 2).
Pulmonary hypertension was diagnosed in 47 patients (72.3%). Infants suffering from PH showed a longer period of mechanical ventilation (21.5 vs. 6.3 mean days, p = 0.02). All 18 patients without PH survived, whereas mortality was 21.3% in patients with PH (n = 10, p = 0.03) and 20 patients on ECMO (95.2%) had PH. All patients diagnosed with PH received iNO. In 29 patients iNO treatment was continued after surgical repair. Mortality among these patients was 24.1% (n = 7). Mean length of iNO treatment was 6.3 days (SD 9.3 days, longest duration 42 days), with a longer duration in non-survivors (mean 14.7 days, SD 14.3 days) compared to survivors (mean 4.5 days, SD 6.8 days, p = 0.02). Administration of iNO for more than 10 days was associated with a fourfold increase of mortality (Fig. 1).
Of all patients 21 (32.3%) received VA ECMO with an overall mortality of 33.3% (n = 7, Table 3) as opposed to 6.8% (n = 3) of patients without ECMO (p = 0.01). Of these patients 2 could not be hemodynamically stabilized and died on ECMO prior to any surgical intervention, ECMO was initiated after a mean of 2.2 days of life (SD = 3.2 days), 8 patients were on ECMO only prior to surgery and could successfully be decannulated either before or immediately after the intervention (mean = 9 days, SD = 2.3, 0% mortality), 9 patients were still in need of ECMO after surgery (mean = 4 days, SD = 2.5, 55.6% mortality) and 2 patients needed ECMO only after surgery (for 9 and 14 days, respectively). Mean length of ECMO treatment overall was 10.8 days (2–36 days, SD 6.6 days). The longest duration of ECMO treatment among survivors was 14 days. Patients receiving ECMO for more than 10 days (n = 10) had a mortality of 40%, compared to 27.3% in patients receiving ECMO for less than 10 days (n = 11, p = 0.29). The relative risk for death was four times higher in patients on ECMO for more than 10 days (Fig. 1).
Table 3
Characteristics of patients on ECMO versus no ECMO
Characteristics
ECMO (n = 21)
No ECMO (n = 44)
p-value
Mortality, n
7 (33.3)
3 (6.8)
0.01
Gestational age at birth, weeks (SD)
37.3 (2.0)
37.6 (2.0)
0.13
Birth weight, g, weight (SD)
2802.5 (510)
2896 (634.6)
0.56
Length of stay in ICU, days (SD)
31.8 (32)
9.9 (10.4)
0.05
Intrathoracic liver, n a
15 (71.4)
21 (47.7)
0.05
R‑CDH, n
5 (23.8)
7 (15.9)
0.62
Comorbidities, n
6 (28.6)
13 (29.5)
1.00
Cardiac defect, n
4 (19)
7 (15.9)
0.74
Duration of ventilation, days (SD)
29.7 (31.3)
11.1 (8.1)
0.02
Pulmonary hypertension, n
20 (95.2)
27 (61.4)
0.004
Duration of iNO treatment, days (SD)
11.2 (10.5)
3.7 (7.5)
0.11
Timing of surgery, days of life (SD) b
9.2 (6.2)
9.3 (30.1)
0.001
Patch repair, n b
11 (52.4)
12 (27.3)
0.02
Surgical complications, n b
5 (23.8)
5 (11.4)
0.26
Data are reported as numbers (percentage) and mean [SD] unless otherwise indicated. P-values were calculated using the χ2-testor the two-tailed unpaired t‑test
n number, SD standard deviation, g grams, ICU intensive care unit, L‑CDH left sided congenital diaphragmatic hernia, R‑CDH right sided congenital diaphragmatic hernia, PH pulmonary hypertension, iNO inhalative nitric oxide, ECMO extracorporeal membrane oxygenation
a In 2 patients the position of liver was unknown
b Two patients on ECMO had no surgical intervention
Of all patients 62 (95.4%) underwent surgery, 3 patients (4.8%) died before any surgical intervention was performed, 2 of them died on ECMO. Two different methods (patch for larger sized defects or stitch for smaller sized defects) were conducted to repair the diaphragm. Stitch repair was the most common method (n = 39, 62.9%). Patch repair was performed in 23 patients (37.1%). Patients with patch-closed hernia showed a trend to increased mortality in comparison to stitch-closed CDH (patch mortality 21.7% vs. stitch mortality 5.1%, p = 0.05). Out of 19 patients on ECMO 11 (57.9%) had a patch repair of the diaphragmatic defect. In contrast, 72.1% of patients repaired by stitch were not on ECMO (n = 31, p = 0.03).

Discussion

In this single-center 16-year experience of 65 patients with congenital diaphragmatic hernia, we report an overall survival of 84.6%. These results are within the upper range of the current literature [7, 8, 1320]. Right-sided CDH, treatment with iNO > 15 days and the use of ECMO > 10 days were significant risk factors for mortality in our cohort. We did not find a significant effect of GA and BW on survival in accordance with Hoffman et al. who showed that BW was not a predictor for mortality in patients on ECMO [21], and Colvin et al. who found no effect of GA on mortality either [6]. Delaplain et al. reported a higher risk of mortality for patients with lower BW [22]. Also, Kadir et al. indicated that risk of mortality declined by 7% for every 100 g increase in BW [8]. Survival of in-born patients was not higher than of out-born patients in our cohort. A possible explanation for this finding could be that out-born infants with severe CDH might have died before transfer, which could not be considered in our analyses due to lack of documentation. In fact, the majority of out-born and transferred patients underwent surgical repair by stitch indicating a less severe and smaller defect of the diaphragm. Our data support the observation that L‑CDH occurs more often than R‑CDH [35] and that overall mortality in infants with R‑CDH is higher than in infants with L‑CDH [4, 22]. Difficulty of prenatal diagnosis [10], necessity of patch repair [23, 24] as well as reoperation are possible reasons for higher mortality among patients with R‑CDH [23]. In contrast to data reported by Duess et al. [9] our findings showed no higher demand for ECMO among patients with R‑CDH. Intrathoracic localization of the liver has repeatedly been reported to be associated with increased mortality, as also found in our cohort, probably due to distinctive pulmonary hypoplasia [2, 14, 17]. Similarly, our data showed a trend towards increased mortality in patients with patch repair in comparison to stitch repair, as also described in other reports [9, 18, 24].
Presence of additional comorbidities is known to limit survival [25]. Published trials showed that patients with additional cardiac anomalies have lower chances of survival [23, 26]. In accordance with published data [5, 26], cardiac anomalies were the most frequently documented additional defects in our cohort, although we found no effect on mortality as opposed to Graziano et al. [27]. This discrepancy could be explained by the difference in sample size (65 patients in our cohort as opposed to more than 2600 patients in the study of Graziano et al.) and the exclusion of atrial septal defects in the study of Graziano et al. due to the lack of hemodynamic significance, which were, however, the most common defects in our cohort. Our data support the observation that survival with extracorporeal support as rescue therapy in severe CDH is lower compared to patients without requirement of ECMO treatment [6]; however, it has been shown that application of ECMO increases survival of patients who are unresponsive to conventional treatment [21, 23]. Morini et al. demonstrated that mortality rates declined from 83.5% to 38.3% when ECMO treatment was applied in patients unresponsive to conventional treatment [28]. In our cohort, 66.7% of CDH infants receiving ECMO survived. This percentage is in the upper range of reports in the literature, ranging from 50–75% [3, 9, 15, 19, 23, 30]. In accordance to published data [29], we observed decreased survival in infants with prolonged need of ECMO treatment. Our data showed a fourfold increase in relative risk of death in patients with ECMO treatment exceeding 10 days, which supports the findings presented by McHoney et al. [5] Pulmonary hypertension has been described as a major risk factor for mortality in patients with CDH [1, 3]. Our analysis also showed increased mortality in patients with a diagnosis of PH as well as longer periods of ventilation, treatment with iNO and necessity of ECMO.
Limitations of this study are its retrospective design and the long time period covered, resulting in incomplete availability of data and individual parameters. On the other hand, given the long time period considered, we were able to report a sufficiently high number of patients to draw conclusions from a single-center experience.
In conclusion, our data on basic characteristics, management and outcome of patients with CDH over a 16-year period in a single tertiary referral center, contribute to the comprehension of predictors for mortality of patients with this rare condition and might help to improve future management of patients with CDH as well as the design of prospective studies.

Acknowledgements

We acknowledge DI Jutta Gamper, BSc. from the Centre for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna for statistical support in this study.

Funding

The authors have no financial relationships relevant to this article to disclose. This research did not receive any specific grant from funding agencies in the public, commercial or non-profit sectors.

Declarations

Conflict of interest

J.B. Brandt, T. Werther,E. Groth, E. Küng, J. Golej, and A. Berger declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee (Medical University of Vienna (EK No 2060/2016)) and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat de Buys Roessingh AS, Dinh-Xuan AT. Congenital diaphragmatic hernia: current status and review of the literature. Eur J Pediatr. 2009;168(4):393–406.PubMedCrossRef de Buys Roessingh AS, Dinh-Xuan AT. Congenital diaphragmatic hernia: current status and review of the literature. Eur J Pediatr. 2009;168(4):393–406.PubMedCrossRef
2.
Zurück zum Zitat Chandrasekharan PK, Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S. Congenital diaphragmatic hernia—a review. Matern Health Neonatol Perinatol. 2017;3:6.PubMedPubMedCentralCrossRef Chandrasekharan PK, Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S. Congenital diaphragmatic hernia—a review. Matern Health Neonatol Perinatol. 2017;3:6.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Greer JJ. Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol. 2013;189(2):232–40.PubMedCrossRef Greer JJ. Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol. 2013;189(2):232–40.PubMedCrossRef
4.
Zurück zum Zitat Brownlee EM, Howatson AG, Davis CF, Sabharwal AJ. The hidden mortality of congenital diaphragmatic hernia: a 20-year review. J Pediatr Surg. 2009;44(2):317–20.PubMedCrossRef Brownlee EM, Howatson AG, Davis CF, Sabharwal AJ. The hidden mortality of congenital diaphragmatic hernia: a 20-year review. J Pediatr Surg. 2009;44(2):317–20.PubMedCrossRef
5.
Zurück zum Zitat McHoney M. Congenital diaphragmatic hernia, management in the newborn. Pediatr Surg Int. 2015;31(11):1005–13.PubMedCrossRef McHoney M. Congenital diaphragmatic hernia, management in the newborn. Pediatr Surg Int. 2015;31(11):1005–13.PubMedCrossRef
6.
Zurück zum Zitat Colvin J, Bower C, Dickinson JE, Sokol J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics. 2005;116(3):e356–e63.PubMedCrossRef Colvin J, Bower C, Dickinson JE, Sokol J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics. 2005;116(3):e356–e63.PubMedCrossRef
7.
Zurück zum Zitat Malowitz JR, Hornik CP, Laughon MM, Testoni D, Cotten CM, Clark RH, et al. Management practice and mortality for infants with congenital diaphragmatic hernia. Am J Perinatol. 2015;32(9):887–94.PubMedPubMedCentralCrossRef Malowitz JR, Hornik CP, Laughon MM, Testoni D, Cotten CM, Clark RH, et al. Management practice and mortality for infants with congenital diaphragmatic hernia. Am J Perinatol. 2015;32(9):887–94.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kadir D, Lilja HE. Risk factors for postoperative mortality in congenital diaphragmatic hernia: a single-centre observational study. Pediatr Surg Int. 2017;33(3):317–23.PubMedCrossRef Kadir D, Lilja HE. Risk factors for postoperative mortality in congenital diaphragmatic hernia: a single-centre observational study. Pediatr Surg Int. 2017;33(3):317–23.PubMedCrossRef
9.
Zurück zum Zitat Duess JW, Zani-Ruttenstock EM, Garriboli M, Puri P, Pierro A, Hoellwarth ME. Outcome of right-sided diaphragmatic hernia repair: a multicentre study. Pediatr Surg Int. 2015;31(5):465–71.PubMedCrossRef Duess JW, Zani-Ruttenstock EM, Garriboli M, Puri P, Pierro A, Hoellwarth ME. Outcome of right-sided diaphragmatic hernia repair: a multicentre study. Pediatr Surg Int. 2015;31(5):465–71.PubMedCrossRef
10.
Zurück zum Zitat Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet. 2007;145C(2):158–71.PubMedPubMedCentralCrossRef Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet. 2007;145C(2):158–71.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.CrossRef
13.
Zurück zum Zitat Wynn J, Krishnan U, Aspelund G, Zhang Y, Duong J, Stolar CJH, et al. Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr. 2013;163(1):114–119.e1.PubMedPubMedCentralCrossRef Wynn J, Krishnan U, Aspelund G, Zhang Y, Duong J, Stolar CJH, et al. Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr. 2013;163(1):114–119.e1.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Bojanić K, Woodbury JM, Cavalcante AN, Grizelj R, Asay GF, Colby CE, et al. Congenital diaphragmatic hernia: outcomes of neonates treated at Mayo Clinic with and without extracorporeal membrane oxygenation. Paediatr Anaesth. 2017;27(3):314–21.PubMedCrossRef Bojanić K, Woodbury JM, Cavalcante AN, Grizelj R, Asay GF, Colby CE, et al. Congenital diaphragmatic hernia: outcomes of neonates treated at Mayo Clinic with and without extracorporeal membrane oxygenation. Paediatr Anaesth. 2017;27(3):314–21.PubMedCrossRef
15.
Zurück zum Zitat Petroze RT, Caminsky NG, Trebichavsky J, Bouchard S, Le-Nguyen A, Laberge J‑M, et al. Prenatal prediction of survival in congenital diaphragmatic hernia: An audit of postnatal outcomes. J Pediatr Surg. 2019; 54(5):925-931. Petroze RT, Caminsky NG, Trebichavsky J, Bouchard S, Le-Nguyen A, Laberge J‑M, et al. Prenatal prediction of survival in congenital diaphragmatic hernia: An audit of postnatal outcomes. J Pediatr Surg. 2019; 54(5):925-931.
16.
Zurück zum Zitat Burgos CM, Frenckner B, Luco M, Harting MT, Lally PA, Lally KP. Prenatally diagnosed congenital diaphragmatic hernia: optimal mode of delivery? J Perinatol. 2017;37(2):134–8.PubMedCrossRef Burgos CM, Frenckner B, Luco M, Harting MT, Lally PA, Lally KP. Prenatally diagnosed congenital diaphragmatic hernia: optimal mode of delivery? J Perinatol. 2017;37(2):134–8.PubMedCrossRef
17.
Zurück zum Zitat Congenital Diaphragmatic Hernia Study Group, Lally KP, Lally PA, Lasky RE, Tibboel D, Jaksic T, et al. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics. 2007;120(3):e651–e7.CrossRef Congenital Diaphragmatic Hernia Study Group, Lally KP, Lally PA, Lasky RE, Tibboel D, Jaksic T, et al. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics. 2007;120(3):e651–e7.CrossRef
18.
Zurück zum Zitat Seetharamaiah R, Younger JG, Bartlett RH, Hirschl RB, Congenital Diaphragmatic Hernia Study Group.. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 2009;44(7):1315–21.PubMedCrossRef Seetharamaiah R, Younger JG, Bartlett RH, Hirschl RB, Congenital Diaphragmatic Hernia Study Group.. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 2009;44(7):1315–21.PubMedCrossRef
19.
Zurück zum Zitat Hung W‑T, Huang S‑C, Mazloum DE, Lin W‑H, Yang H‑H, Chou H‑C, et al. Extracorporeal membrane oxygenation for neonatal congenital diaphragmatic hernia: the initial single-center experience in Taiwan. J Formos Med Assoc. 2017;116(5):333–9.PubMedCrossRef Hung W‑T, Huang S‑C, Mazloum DE, Lin W‑H, Yang H‑H, Chou H‑C, et al. Extracorporeal membrane oxygenation for neonatal congenital diaphragmatic hernia: the initial single-center experience in Taiwan. J Formos Med Assoc. 2017;116(5):333–9.PubMedCrossRef
20.
Zurück zum Zitat Öst E, Joelsson MÖ, Burgos CM, Frenckner B. Self-assessed physical health among children with congenital diaphragmatic hernia. Pediatr Surg Int. 2016;32(5):493–503.PubMedCrossRef Öst E, Joelsson MÖ, Burgos CM, Frenckner B. Self-assessed physical health among children with congenital diaphragmatic hernia. Pediatr Surg Int. 2016;32(5):493–503.PubMedCrossRef
21.
Zurück zum Zitat Hoffman SB, Massaro AN, Gingalewski C, Short BL. Predictors of survival in congenital diaphragmatic hernia patients requiring extracorporeal membrane oxygenation: CNMC 15-year experience. J Perinatol. 2010;30(8):546–52.PubMedCrossRef Hoffman SB, Massaro AN, Gingalewski C, Short BL. Predictors of survival in congenital diaphragmatic hernia patients requiring extracorporeal membrane oxygenation: CNMC 15-year experience. J Perinatol. 2010;30(8):546–52.PubMedCrossRef
23.
Zurück zum Zitat Bryner BS, Kim AC, Khouri JS, Drongowski RA, Bruch SW, Hirschl RB, et al. Right-sided congenital diaphragmatic hernia: high utilization of extracorporeal membrane oxygenation and high survival. J Pediatr Surg. 2009;44(5):883–7.PubMedCrossRef Bryner BS, Kim AC, Khouri JS, Drongowski RA, Bruch SW, Hirschl RB, et al. Right-sided congenital diaphragmatic hernia: high utilization of extracorporeal membrane oxygenation and high survival. J Pediatr Surg. 2009;44(5):883–7.PubMedCrossRef
24.
Zurück zum Zitat Collin M, Trinder S, Minutillo C, Rao S, Dickinson J, Samnakay N. A modern era comparison of right versus left sided congenital diaphragmatic hernia outcomes. J Pediatr Surg. 2016;51(9):1409–13.PubMedCrossRef Collin M, Trinder S, Minutillo C, Rao S, Dickinson J, Samnakay N. A modern era comparison of right versus left sided congenital diaphragmatic hernia outcomes. J Pediatr Surg. 2016;51(9):1409–13.PubMedCrossRef
25.
Zurück zum Zitat Fisher JC, Jefferson RA, Arkovitz MS, Stolar CJH. Redefining outcomes in right congenital diaphragmatic hernia. J Pediatr Surg. 2008;43(2):373–9.PubMedCrossRef Fisher JC, Jefferson RA, Arkovitz MS, Stolar CJH. Redefining outcomes in right congenital diaphragmatic hernia. J Pediatr Surg. 2008;43(2):373–9.PubMedCrossRef
26.
Zurück zum Zitat Montalva L, Lauriti G, Zani A. Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcome. J Pediatr Surg. 2019; 54(5):909-919. Montalva L, Lauriti G, Zani A. Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcome. J Pediatr Surg. 2019; 54(5):909-919.
27.
Zurück zum Zitat Graziano JN, Congenital Diaphragmatic Hernia Study Group. Cardiac anomalies in patients with congenital diaphragmatic hernia and their prognosis: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 2005;40(6):1045–9. discussion 1049–1050.PubMedCrossRef Graziano JN, Congenital Diaphragmatic Hernia Study Group. Cardiac anomalies in patients with congenital diaphragmatic hernia and their prognosis: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 2005;40(6):1045–9. discussion 1049–1050.PubMedCrossRef
28.
Zurück zum Zitat Morini F, Goldman A, Pierro A. Extracorporeal membrane oxygenation in infants with congenital diaphragmatic hernia: a systematic review of the evidence. Eur J Pediatr Surg. 2006;16(6):385–91.PubMedCrossRef Morini F, Goldman A, Pierro A. Extracorporeal membrane oxygenation in infants with congenital diaphragmatic hernia: a systematic review of the evidence. Eur J Pediatr Surg. 2006;16(6):385–91.PubMedCrossRef
29.
Zurück zum Zitat Vaja R, Bakr A, Sharkey A, Joshi V, Faulkner G, Westrope C, et al. The use of extracorporeal membrane oxygenation in neonates with severe congenital diaphragmatic hernia: a 26-year experience from a tertiary centre. Eur J Cardiothorac Surg. 2017;52(3):552–7.PubMedCrossRef Vaja R, Bakr A, Sharkey A, Joshi V, Faulkner G, Westrope C, et al. The use of extracorporeal membrane oxygenation in neonates with severe congenital diaphragmatic hernia: a 26-year experience from a tertiary centre. Eur J Cardiothorac Surg. 2017;52(3):552–7.PubMedCrossRef
30.
Zurück zum Zitat Golden J, Jones N, Zagory J, Castle S, Bliss D. Outcomes of congenital diaphragmatic hernia repair on extracorporeal life support. Pediatr Surg Int. 2017;33(2):125–31.PubMedCrossRef Golden J, Jones N, Zagory J, Castle S, Bliss D. Outcomes of congenital diaphragmatic hernia repair on extracorporeal life support. Pediatr Surg Int. 2017;33(2):125–31.PubMedCrossRef
Metadaten
Titel
Risk factors for mortality in infants with congenital diaphragmatic hernia: a single center experience
verfasst von
Jennifer Bettina Brandt, MD
Tobias Werther, MD
Erika Groth
Erik Küng, MD
Johann Golej, MD
Angelika Berger, MD, MBA
Publikationsdatum
30.03.2021
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 13-14/2021
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-021-01843-w

Weitere Artikel der Ausgabe 13-14/2021

Wiener klinische Wochenschrift 13-14/2021 Zur Ausgabe

MUW researcher of the month

MUW researcher of the month