CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2017; 38(03): 273-276
DOI: 10.4103/ijmpo.ijmpo_26_16
Original Article

Evaluation of Micronucleus in Exfoliated Buccal Epithelial Cells Using Liquid‑based Cytology Preparation in Petrol Station Workers

P Arul
Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
,
Smitha Shetty
Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
,
Suresh Masilamani
Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
,
C Akshatha
Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
,
BJ Naveen Naveen Kumar
Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Background: Liquid-based cytology (LBC) can be used for the evaluation of micronucleus (MN) in exfoliated buccal epithelial cells of populations occupationally exposed to potentially carcinogenic agents. Aim: This study was undertaken to evaluate the frequency of MN of exfoliated buccal epithelial cells using LBC preparation in petrol station workers. Materials and Methods: Fifty petrol station workers (cases) and fifty hospital administrative staffs (controls) were recruited and evaluated for MN by May-Grunwald Giemsa, Hematoxylin and Eosin, and Papanicolaou stains using LBC preparation. Statistical analysis was performed with Student's t-test, and P < 0.05 was considered statistically significant. Results: Regardless of staining method used, the mean frequency of MN for cases was significantly higher than that of controls (P < 0.001). Conclusion: The present study concluded that petrol station workers are under risk of significant cytogenetic damage. The MN in exfoliated buccal epithelial cells found to be a useful biomarker of occupational exposure to genotoxic chemicals. LBC can be used for sample preparation to evaluate the frequency of MN in those who are occupationally exposed to potentially carcinogenic agents in view of overall improvement on sample preservation and visualization of cell morphology.



Publication History

Article published online:
04 July 2021

© 2017. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Sivasankari NP, Kaur S, Reddy KS, Vivekanandam S, Rao KR. Micronucleus index: An early diagnosis in oral carcinoma. J Anat Soc India 2008;57:8-13.
  • 2 Motgi AA, Chavan MS, Diwan NN, Chowdhery A, Channe PP, Shete MV. Assessment of cytogenic damage in the form of micronuclei in oral epithelial cells in patients using smokeless and smoked form of tobacco and non-tobacco users and its relevance for oral cancer. J Cancer Res Ther 2014;10:165-70.
  • 3 Celik A, Cavas T, Ergene-Gözükara S. Cytogenetic biomonitoring in petrol station attendants: Micronucleus test in exfoliated buccal cells. Mutagenesis 2003;18:417-21.
  • 4 Carere A, Antoccia A, Crebelli R, Degrassi F, Fiore M, Iavarone I, et al. Genetic effects of petroleum fuels: Cytogenetic monitoring of gasoline station attendants. Mutat Res 1995;332:17-26.
  • 5 Ramos MA, Cury Fde P, Scapulatempo Neto C, Marques MM, Silveira HC. Micronucleus evaluation of exfoliated buccal epithelial cells using liquid-based cytology preparation. Acta Cytol 2014;58:582-8.
  • 6 Zeppa P. Liquid-based cytology: A 25-year bridge between the Pap smear and molecular cytopathology. Acta Cytol 2014;58:519-21.
  • 7 Mygdakos N, Nikolaidou S, Tzilivaki A, Tamiolakis D. Liquid based preparation (LBP) cytology versus conventional cytology (CS) in FNA samples from breast, thyroid, salivary glands and soft tissues. Our experience in Crete (Greece). Rom J Morphol Embryol 2009;50:245-50.
  • 8 Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: A field test in snuff users. Am J Epidemiol 1991;134:840-50.
  • 9 El-Setouhy M, Loffredo CA, Radwan G, Abdel Rahman R, Mahfouz E, Israel E, et al. Genotoxic effects of waterpipe smoking on the buccal mucosa cells. Mutat Res 2008;655:36-40.
  • 10 Zhang L, Eastmond DA, Smith MT. The nature of chromosomal aberrations detected in humans exposed to benzene. Crit Rev Toxicol 2002;32:1-42.
  • 11 Singaraju M, Singaraju S, Parwani R, Wanjari S. Cytogenetic biomonitoring in petrol station attendants: A micronucleus study. J Cytol 2012;29:1-5.
  • 12 Sisenando HA, Batistuzzo de Medeiros SR, Artaxo P, Saldiva PH, Hacon Sde S. Micronucleus frequency in children exposed to biomass burning in the Brazilian Legal Amazon region: A control case study. BMC Oral Health 2012;12:6.
  • 13 Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, et al. Buccal micronucleus cytome assay. Nat Protoc 2009;4:825-37.
  • 14 Rajkokila K, Shajithanoop S, Usharani MV. Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamil Nadu, South India. J Med Genet Genomics 2010;2:18-22.
  • 15 Revazova J, Yurchenko V, Katosova L, Platonova V, Sycheva L, Khripach L, et al. Cytogenetic investigation of women exposed to different levels of dioxins in Chapaevsk town. Chemosphere 2001;43:999-1004.
  • 16 Roth MG, Viégas J, Amaral M, Oliveira L, Ferreira FL, Erdtmann B. Evaluation of genotoxicity through micronuclei test in workers of car and battery repair garages. Gene Mol Biol 2002;25:495-500.
  • 17 Pitarque M, Carbonell E, Lapeña N, Marsá M, Torres M, Creus A, et al. No increase in micronuclei frequency in cultured blood lymphocytes from a group of filling station attendants. Mutat Res 1996;367:161-7.
  • 18 Surrallés J, Autio K, Nylund L, Järventaus H, Norppa H, Veidebaum T, et al. Molecular cytogenetic analysis of buccal cells and lymphocytes from benzene-exposed workers. Carcinogenesis 1997;18:817-23.
  • 19 Sellappa S, Sadhanandhan B, Francis A, Vasudevan SG. Evaluation of genotoxicity in petrol station workers in South India using micronucleus assay. Ind Health 2010;48:852-6.
  • 20 Gadhia PK, Thumbar RP, Kevadiya B. Cytome assay of buccal epithelium for bio-monitoring genotoxic assessment of benzene exposure among petrol pump attendants. Int J Hum Genet 2010;10:239-45.
  • 21 Beerman H, van Dorst EB, Kuenen-Boumeester V, Hogendoorn PC. Superior performance of liquid-based versus conventional cytology in a population-based cervical cancer screening program. Gynecol Oncol 2009;112:572-6.
  • 22 Kujan O, Desai M, Sargent A, Bailey A, Turner A, Sloan P. Potential applications of oral brush cytology with liquid-based technology: Results from a cohort of normal oral mucosa. Oral Oncol 2006;42:810-8.
  • 23 Hayama FH, Motta AC, Silva Ade P, Migliari DA. Liquid-based preparations versus conventional cytology: Specimen adequacy and diagnostic agreement in oral lesions. Med Oral Patol Oral Cir Bucal 2005;10:115-22.