Methods Inf Med 2009; 48(05): 486-492
DOI: 10.3414/ME0580
Original Articles
Schattauer GmbH

Prediction of Countershock Success

A Comparison of Autoregressive and Fast Fourier Transformed Spectral Estimators
C. N. Nowak
1   Institute of Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
,
G. Fischer
1   Institute of Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
,
A. Neurauter
2   Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
,
L. Wieser
1   Institute of Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
,
H. U. Strohmenger
2   Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

received: 02 June 2008

accepted: 23 February 2009

Publication Date:
20 January 2018 (online)

Summary

Objectives: Spectral analysis of the ventricular fibrillation (VF) ECG has been used for predicting countershock success, where the Fast Fourier Transformation (FFT) is the standard spectral estimator. Autoregressive (AR) spectral estimation should compute the spectrum with less computation time. This study compares the predictive power and computational performance of features obtained by the FFT and AR methods.

Methods: In an animal model of VF cardiac arrest, 41 shocks were delivered in 25 swine. For feature parameter analysis, 2.5 s signal intervals directly before the shock and directly before the hands-off interval were used, respectively. Invasive recordings of the arterial pressure were used for assessing the outcome of each shock. For a proof of concept, a micro-controller program was implemented.

Results: Calculating the area under the receiver operating characteristic (ROC) curve (AUC), the results of the AR-based features called spectral pole power (SPP) and spectral pole power with dominant frequency (DF) weighing (SPPDF) yield better outcome prediction results (85 %; 89 %) than common parameters based on FFT calculation method (centroid frequency (CF), amplitude spectrum area (AMSA)) (72%; 78%) during hands-off interval. Moreover, the predictive power of the feature parameters during ongoing CPR was not invalidated by closed-chest compressions. The calculation time of the AR-based parameters was nearly 2.5 times faster than the FFT-based features.

Conclusion: Summing up, AR spectral estimators are an attractive option compared to FFT due to the reduced computational speed and the better outcome prediction. This might be of benefit when implementing AR prediction features on the microprocessor of a semi-automatic defibrillator.

 
  • References

  • 1 Deakin CD, Nolan JP. European Resuscitation Council guidelines for resuscitation 2005. Section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation 2005; 67: 25-27.
  • 2 Sato Y. et al. Adverse effects of interrupting precor-dial compression during cardiopumonary resuscitation. Crit Care Med 1997; 25: 733-736.
  • 3 Martin G. et al. Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation. Effects of coronary perfusion and nifedipine. Eur Heart J 1986; 7: 560-569.
  • 4 Xie J. et al. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 1997; 96: 683-688.
  • 5 Eftestøl T, Sunde K, Aase SO, Husøy JH, Steen PA. Predicting Outcome of Defibrillation by spectral Characterization and Nonparametric Classification of Ventriculat Fibrillation in Patients with out-of-hospital cardiac Arrest. Circulation 2000; 102: 1523-1529.
  • 6 Brown CG. et al. Median Frequency: a new parameter for predicting defibrillations success rate. Ann Emerg Med 1991; 20: 787-789.
  • 7 Strohmenger HU, Eftestøl T, Sunde K, Wenzel V, Mair M, Ulmer H, Lindner KH, Steen PA. The predictive value of ventricular fibrillation electrocardiogram signal frequency and amplitude variables in patients with out-of-hospital cardiac arrest. Anesth analg 2001; 93: 1428-1433.
  • 8 Eftestøl T, Sunde K, Steen PA. Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Outof-Hospital cardiac Arrest. Circulation. 2002; 105: 2270-2273.
  • 9 Marn-Pernat A. et al. Optimizing timing of ventricular defibrillation. Crit Care Med 2001; 29: 2360-2365.
  • 10 Watson JN. et al. A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation. Resuscitation 2000; 43: 121-127.
  • 11 Callaway CW, Sherman LD, Mosesso VN, Dietrich TJ, Holt E, Clarkson MC. Scaling exponent predicts defibrillation success for out-of-hospital ventricular fibrillation cardiac arrest. Circulation 2001; 103: 1656-1661.
  • 12 Amann A, Achleitner U, Antretter H, Bonatti JO, Krismer AC, Lindner KH, Rieder J, Wenzel V, Voelckel WG, Strohmenger HU. Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(alpha)-histograms. Resuscitation 2001; 50: 77-85.
  • 13 Neurauter A, Kramer-Johansen J, Eilevstjønn J, Myklebust H, Wenzel V, Lindner KH, Eftestøl T, Steen PA, Strohmenger HU. Estimation of the duration of ventricular fibrillation using ECG single feature analysis. Resuscitation 2007; 73: 246-252.
  • 14 Strohmenger HU, Lindner KH. CG Brown.. Analysis of the Ventricular Fibrillation ECG Signal Amplitude and Frequency Parameters as Prediction of Counterschock Success in Humans. Chest 1997; 111: 584-589.
  • 15 Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. Spectral Decomposition in Multichannel Recordings Based on Multivariate Parametric Identification. IEEE Trans Biomed Eng 1997; 44: 1092-1110.
  • 16 Signorini MG, Magenes G, Cerutti S. Linear and Nonlinear Parameters for the Analysis of Fetal Heart Rate Signal from Cardiotocographic recordings. IEEE Trans Biomed Eng 2003; 50: 365-374.
  • 17 Jensen EW. et al. Autoregressive modeling with exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in depth of anesthesia. Methods Inf Med 1996; 35: 256-260.
  • 18 Mainardi LT, Bianchi AM, Baselli G. Pole-Tracking Algorithms for the Extraction of Time-Variant Heart Rate Variability Spectral Parameters. IEEE Trans Biomed Eng 1995; 42: 250-259.
  • 19 Wenzel V, Lindner KH, Krismer AC, Miller AE, Voelckel WG, Lingau W. Repeated Administration of Vasopressin but not Epinephrine maintains coronary perfusion pressure after early and late administration during prolonged cardiopulmonary resuscitation in pigs. Circulation. 1999; 99: 1379-1384.
  • 20 Idris AH. et al. Utstein-style guidelines for uniform reporting of laboratory CPR research. Circulation 1996; 94: 2324-2336.
  • 21 Introduction to Spectral Analysis.. Engelwood Cliffs,. New Yersey:: Prentice-Hall; 1997
  • 22 Fischer G, Nowak CN, Wieser L, Tilg B, Strohmenger HU. AR Frequency Band Analysis of the ECG During Non-Ischemic Ventricular Fibrillation in Swine. Proceedings of ÖGBMT 2005 pp 51-52.
  • 23 Eftestøl T, Wik L, Sunde K, Steen PA. Effects of Cardiopulmonary Resuscitation on Predictors of Ventricular Firillation Success During Out-of-Hospital Cardiac Arrest. Circulation 2004; 110: 10-15.
  • 24 Callaway CW, Menegazzi JJ. Waveform analysis of ventricular fibrillation to predict defibrillation. Curr Opin Crit Care 2005; 11: 192-199.
  • 25 Ristagno G, Gullo A, Berlot G, Lucangelo U, Geheb E, Bisera J. Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis.. Anaesth Intensive Care 2008; 36: 46-50.
  • 26 Numerical Recipes in C.. The Art of Scientific Computing. 2. Cambridge: Cambridge University Press; 1992
  • 27 Khorasani RR, Dumont RS. Long time wave packet dynamics from energy eigenfunctions: nonuniform energy resolution via adaptive bisection fast Fourier transformation. J Chem Phys 2007; 127: 184107.
  • 28 Takata TS, Page RL, Joglar JA. Automated external defibrillators: technical considerations and clinical promise. Ann Intern Med 2001; 135: 900-908.
  • 29 Strohmenger HU, Lindner KH, Keller A, Lindner IM, Pfenninger EG. Spectral analysis of ventricular fibrillation and closed-chest cardiopulmonary resuscitation. Resuscitation 1996; 33: 155-161.
  • 30 Fortin J, Habenbacher W, Grüllenberger R, Wach P, Skrabal F. Real-Time Monitor for Hemodynamic Beat-To-Beat Parameters and Power Spectra Analysis of the Biosignals. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1998; 1: 360-363.
  • 31 Schlögl A, Supp G. Analyzing event-related EEG data with multivariate autoregressive parameters. Prog Brain res 2006; 159: 135-147.
  • 32 Guler I, Kara S, Guler NF, Kiymik MK. Application of autoregressive and Fast Fourier Transform spectral analysis to tricuspid and mitral valve stenosis. Comput Methods Programs Biomed 1996; 49: 29-36.
  • 33 Eilevstjønn J, Kramer-Johansen J, Eftestøl T, Stavland M, Myklebust H, Steen PA. Reducing no flow times during automated external defibrillation. Resuscitation 2005; 67: 95-101.
  • 34 Tang W, Weil MH, Schock RB, Sato Y, Lucas J, Sun S, Bisera J. Phased chest and abdominal compression-decompression. A new option for cardio-pulmonary resuscitation. Circulation 1997; 95: 1335-1340.
  • 35 Husøy JH, Eilevstjønn J, Eftestøl T, Aase SO, Mykle-bust H, Steen PA. Removal of Cardiopulmonary Resuscitation Artifacts From Human ECG Using an Efficient Matching Pursuit-Like Algorithm. IEEE Trans Biomed Eng 2002: 1287-1298.
  • 36 Capek P, Skvor J. Hypertrophic cardiomyopathy – molecular genetic analysis of exons 9 and 11 of the TNNT2 gene in Czech patients. Methods Inf Med 2006; 45: 169-172.
  • 37 Siregar P, Julen N, Sinteff JP. Computational integrative physiology: at the convergence of the life and computational sciences. Methods Inf Med 2003; 42: 177-184.
  • 38 Wenzel V. et al. Die neuen internationalen Richtlinien zur kardiopulmonalen Reanimation. Eine Analyse und Kommentierung der wichtigsten Änderungen. Aneasthesist 2001; 50: 342-357.
  • 39 Nowak CN, Fischer G, Wieser L, Tilg B, Strohmenger HU. Comparison of simulated and animal ECG data during Ventricular Fibrillation. Proceedings of the joint annual meeting of the German, Austrian and Swiss Society of Biomedical Engineering 2006: 30.