Thromb Haemost 2012; 107(04): 626-633
DOI: 10.1160/TH11-08-0603
Theme Issue Article
Schattauer GmbH

MicroRNAs in the regulation of immune cell functions – implications for atherosclerotic vascular disease

Alma Zernecke
1   Rudolf-Virchow-Center/DFG-Research Center for Experimental Biomedicine, University of Würzburg, Germany
› Author Affiliations
Financial support: This work was supported by the Deutsche Forschungsgemeinschaft (FOR809, ZE 827/1–2, ZE 827/4–1; SFB688, TP A12).
Further Information

Publication History

Received: 31 August 2011

Accepted after minor revision: 27 February 2011

Publication Date:
29 November 2017 (online)

Summary

Regarded as a chronic inflammatory disease of the vessel wall, the development of atherosclerotic lesions is shaped by immune responses and their regulation. Macrophages and dendritic cells are positioned at the crossroad of innate and adaptive immune responses by sensing atherogenic danger signals and by taking up and presenting antigens. T helper cells and auto-antibodies produced by B cells, together with their cytokine responses in turn modulate atheroprogression. In addition, platelets contribute to atherosclerosis by multiple pathways. microRNAs (miRNAs) that post-transcriptionally regulate gene expression may thus critically control immune cell differentiation and functions during plaque evolution. This review summarises the role of miRNAs in regulating lipid uptake and expression of inflammatory mediators in monocytes/macrophages and dendritic cells, in lymphocyte functions with a focus on T helper cell responses, as well as in platelet biology, and the implications of altering these functions in vascular pathology and atherosclerosis. T systematically survey miRNA functions in controlling molecular mechanisms and immune responses in atherosclerosis holds potential for the development of novel miRNA-based strategies for therapies targeting inflammation and immunity in atherosclerosis.

 
  • References

  • 1 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 2 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  • 3 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008; 08: 802-815.
  • 4 Paulson KE, Zhu SN, Chen M. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circulation Res 2010; 106: 383-390.
  • 5 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nature Immunol 2011; 12: 204-212.
  • 6 Buono C, Binder CJ, Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  • 7 Ait-Oufella H, Salomon BL, Potteaux S. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178-180.
  • 8 Taleb S, Romain M, Ramkhelawon B. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206: 2067-2077.
  • 9 Lahoute C, Herbin O, Mallat Z. et al. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 2011; 08: 348-358.
  • 10 Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008; 79: 360-376.
  • 11 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008; 09: 102-114.
  • 12 Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175-205.
  • 13 Weber C, Schober A, Zernecke A. MicroRNAs in arterial remodelling, inflammation and atherosclerosis. Curr Drug Targets 2010; 11: 950-956.
  • 14 Vickers KC, Remaley AT. MicroRNAs in atherosclerosis and lipoprotein metabolism. Curr Opin Endocrinol Diabetes Obes 2010; 17: 150-155.
  • 15 Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005; 122: 6-7.
  • 16 Lodish HF, Zhou B, Liu G. et al. Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008; 08: 120-130.
  • 17 Lindsay MA. microRNAs and the immune response. Trends Immunol 2008; 29: 343-351.
  • 18 O'Connell RM, Rao DS, Chaudhuri AA. et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111-122.
  • 19 El Gazzar M, McCall CE. MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol. 2011 epub ahead of print
  • 20 Boldin MP, Taganov KD, Rao DS. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189-1201.
  • 21 Johnnidis JB, Harris MH, Wheeler RT. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125-1129.
  • 22 O'Connell RM, Rao DS, Chaudhuri AA. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585-594.
  • 23 O'Connell RM, Taganov KD, Boldin MP. et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604-1609.
  • 24 Tili E, Michaille JJ, Cimino A. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082-5089.
  • 25 Ceppi M, Pereira PM, Dunand-Sauthier I. et al. MicroRNA-155 modulates the in-terleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 2009; 106: 2735-2740.
  • 26 Wang P, Hou J, Lin L. et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185: 6226-6233.
  • 27 Taganov KD, Boldin MP, Chang KJ. et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481-12486.
  • 28 Hou J, Wang P, Lin L. et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150-2158.
  • 29 Nahid MA, Satoh M, Chan EK. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 2011; 186: 1723-1734.
  • 30 Swirski FK, Libby P, Aikawa E. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205.
  • 31 Zernecke A, Bot I, Djalali-Talab Y. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 2008; 102: 209-217.
  • 32 Drechsler M, Megens RT, van Zandvoort M. et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122: 1837-1845.
  • 33 Dunand-Sauthier I, Santiago-Raber ML, Capponi L. et al. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 2011; 117: 4490-4500.
  • 34 Hashimi ST, Fulcher JA, Chang MH. et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 2009; 114: 404-414.
  • 35 Liu P, Yu YR, Spencer JA. et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 2008; 28: 243-250.
  • 36 Manthey H, Zernecke A. Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb Haemost 2011; 106: 772-778.
  • 37 Geissmann F, Manz MG, Jung S. et al. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327: 656-661.
  • 38 Nickel T, Schmauss D, Hanssen H. et al. oxLDL uptake by dendritic cells induces upregulation of scavenger-receptors, maturation and differentiation. Atherosclerosis 2009; 205: 442-450.
  • 39 Cybulsky MI, Jongstra-Bilen J. Resident intimal dendritic cells and the initiation of atherosclerosis. Curr Opin Lipidol 2010; 21: 397-403.
  • 40 Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des 2005; 11: 3061-3072.
  • 41 Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J Lipid Res 2009; 50 Suppl S340-345.
  • 42 Seimon TA, Nadolski MJ, Liao X. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell metabolism 2010; 12: 467-482.
  • 43 Stewart CR, Stuart LM, Wilkinson K. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol 2010; 11: 155-161.
  • 44 Chen T, Huang Z, Wang L. et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83: 131-139.
  • 45 Chen T, Yan H, Li Z. et al. MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/ macrophages. Int J Cardiol 2011; 147: 446-447.
  • 46 Huang RS, Hu GQ, Lin B. et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized lowdensity lipoprotein-stimulated human THP-1 macrophages. J Investig Med 2010; 58: 961-967.
  • 47 Mehta JL, Sanada N, Hu CP. et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circulation Res 2007; 100: 1634-1642.
  • 48 Babaev VR, Gleaves LA, Carter KJ. et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 2000; 20: 2593-2599.
  • 49 Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108: 785-791.
  • 50 Moore KJ, Kunjathoor VV, Koehn SL. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 2005; 115: 2192-2201.
  • 51 Chen T, Li Z, Jing T. et al. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Lett 2011; 585: 567-573.
  • 52 Yang K, He YS, Wang XQ. et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting tolllike receptor 4. FEBS Lett 2011; 585: 854-860.
  • 53 Gautier EL, Huby T, Saint-Charles F. et al. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation 2009; 119: 2367-2375.
  • 54 O'Connell RM, Kahn D, Gibson WS. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33: 607-619.
  • 55 Lu C, Huang X, Zhang X. et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011; 117: 4293-4303.
  • 56 Goossens P, Gijbels MJ, Zernecke A. et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metabolism 2010; 12: 142-153.
  • 57 Kleemann R, Hausser A, Geiger G. et al. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 2000; 408: 211-216.
  • 58 Kurowska-Stolarska M, Alivernini S, Ballantine LE. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 2011; 108: 11193-11198.
  • 59 Jurkin J, Schichl YM, Koeffel R. et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010; 184: 4955-4965.
  • 60 Raitoharju E, Lyytikainen LP, Levula M. et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 2011; 219: 211-217.
  • 61 Liu G, Friggeri A, Yang Y. et al. miR-147, a microRNA that is induced upon Tolllike receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819-15824.
  • 62 Hoekstra M, van der Lans CA, Halvorsen B. et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 2010; 394: 792-797.
  • 63 Liu X, Zhan Z, Xu L. et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 2010; 185: 7244-7251.
  • 64 Bazzoni F, Rossato M, Fabbri M. et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282-5287.
  • 65 Shi MA, Shi GP. Intracellular delivery strategies for microRNAs and potential therapies for human cardiovascular diseases. Sci Signal 2010; 03: pe40.
  • 66 Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006; 06: 508-519.
  • 67 Li QJ, Chau J, Ebert PJ. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147-161.
  • 68 Rossi RL, Rossetti G, Wenandy L. et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4(+) T cells by the microRNA miR-125b. Nature Immunol 2011; 12: 796-803.
  • 69 Chong MM, Rasmussen JP, Rudensky AY. et al. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 2008; 205: 2005-2017.
  • 70 Muljo SA, Ansel KM, Kanellopoulou C. et al. Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005; 202: 261-269.
  • 71 Stittrich AB, Haftmann C, Sgouroudis E. et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper Tlymphocytes. Natu re Immunol 2010; 11: 1057-1062.
  • 72 Curtale G, Citarella F, Carissimi C. et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 2010; 115: 265-273.
  • 73 Steiner DF, Thomas MF, Hu JK. et al. MicroRNA-29 Regulates T-Box Transcription Factors and Interferon-gamma Production in Helper T Cells. Immunity 2011; 35: 169-181.
  • 74 Ma F, Xu S, Liu X. et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferongamma. Nature Immunol 2011; 12: 861-869.
  • 75 Rodriguez A, Vigorito E, Clare S. et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608-611.
  • 76 Vigorito E, Perks KL, Abreu-Goodger C. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847-859.
  • 77 Thai TH, Calado DP, Casola S. et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604-608.
  • 78 Murugaiyan G, Beynon V, Mittal A. et al. Silencing MicroRNA-155 Ameliorates Experimental Autoimmune Encephalomyelitis. J Immunol 2011; 187: 2213-2221.
  • 79 Banerjee A, Schambach F, DeJong CS. et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol 2010; 40: 225-231.
  • 80 Kohlhaas S, Garden OA, Scudamore C. et al. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009; 182: 2578-2582.
  • 81 Lu LF, Thai TH, Calado DP. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30: 80-91.
  • 82 Du C, Liu C, Kang J. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10: 1252-1259.
  • 83 Ventura A, Young AG, Winslow MM. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132: 875-886.
  • 84 Xiao C, Srinivasan L, Calado DP. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 09: 405-414.
  • 85 Dews M, Homayouni A, Yu D. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38: 1060-1065.
  • 86 Sarfati M, Fortin G, Raymond M. et al. CD47 in the immune response: role of thrombospondin and SIRP-alpha reverse signaling. Curr Drug Targets 2008; 09: 842-850.
  • 87 Li SS, Ivanoff A, Bergstrom SE. et al. T lymphocyte expression of thrombospondin-1 and adhesion to extracellular matrix components. Eur J Immunol 2002; 32: 1069-1079.
  • 88 van Es T, van Puijvelde GH, Ramos OH. et al. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 2009; 388: 261-265.
  • 89 Gao Q, Jiang Y, Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  • 90 Smith E, Prasad KM, Butcher M. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 2010; 121: 1746-1755.
  • 91 Xiao C, Calado DP, Galler G. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146-159.
  • 92 Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 2002; 22: 1892-1898.
  • 93 Binder CJ, Hartvigsen K, Chang MK. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004; 114: 427-437.
  • 94 Kyaw T, Tay C, Khan A. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 2010; 185: 4410-4419.
  • 95 Ait-Oufella H, Herbin O, Bouaziz JD. et al. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 2010; 207: 1579-1587.
  • 96 Calame K. MicroRNA-155 function in B Cells. Immunity 2007; 27: 825-827.
  • 97 Belver L, de Yebenes VG, Ramiro AR. MicroRNAs prevent the generation of autoreactive antibodies. Immunity 2010; 33: 713-722.
  • 98 Teng G, Hakimpour P, Landgraf P. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28: 621-629.
  • 99 Basso K, Sumazin P, Morozov P. et al. Identification of the human mature B cell miRNome. Immunity 2009; 30: 744-752.
  • 100 Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 02: 282.
  • 101 Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364: 1746-1760.
  • 102 Semple JW, Italiano Jr. JE, Freedman J. Platelets and the immune continuum. Nature reviews Immunology 2011; 11: 264-274.
  • 103 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 104 Garzon R, Pichiorri F, Palumbo T. et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078-5083.
  • 105 Landry P, Plante I, Ouellet DL. et al. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16: 961-966.
  • 106 Opalinska JB, Bersenev A, Zhang Z. et al. MicroRNA expression in maturing murine megakaryocytes. Blood 2010; 116: e128-138.
  • 107 Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 2008; 81: 304-310.
  • 108 Nagalla S, Shaw C, Kong X. et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117: 5189-5197.
  • 109 Kondkar AA, Bray MS, Leal SM. et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 2010; 08: 369-378.
  • 110 Montgomery RL, van Rooij E. MicroRNA regulation as a therapeutic strategy for cardiovascular disease. Curr Drug Targets 2010; 11: 936-942.