Thromb Haemost 2012; 107(03): 399-408
DOI: 10.1160/TH11-08-0593
Review Article
Schattauer GmbH

Thrombotic microangiopathy: A role for magnesium?

Steven Van Laecke
1   Department of Nephrology, Ghent University Hospital, Ghent, Belgium
,
Evi V. T. Nagler
1   Department of Nephrology, Ghent University Hospital, Ghent, Belgium
,
Raymond Vanholder
1   Department of Nephrology, Ghent University Hospital, Ghent, Belgium
› Author Affiliations
Further Information

Publication History

Received: 28 August 2011

Accepted after major revision: 01 January 2011

Publication Date:
22 November 2017 (online)

Summary

Despite advances in more recent years, the pathophysiology and especially treatment modalities of thrombotic microangiopathy (TMA) largely remain enigmatic. Disruption of endothelial homeostasis plays an essential role in TMA. Considering the proven causal association between magnesium and both endothelial function and platelet aggreg-ability, we speculate that a magnesium deficit could influence the course of TMA and the related haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. A predisposition towards TMA is seen in many conditions with both extracellular and intracellular magnesium deficiency. We propose a rationale for magnesium supplementation in TMA, in analogy with its evidence-based therapeutic application in pre-eclampsia and suggest, based on theoretical grounds, that it might attenuate the development of TMA, minimise its severity and prevent its recurrence. This is based on several lines of evidence from both in vitro and in vivo data showing dose-dependent effects of magnesium supplementation on nitric oxide production, platelet ag-gregability and inflammation. Our hypothesis, which is further amenable to assessment in animal models before therapeutic applications in humans are implemented, could be explored both in vitro and in vivo to decipher the potential role of magnesium deficit in TMA and of the effects of its supplementation.

 
  • References

  • 1 Allanby KD, Huntsman RG, Sacker LS. Thrombotic microangiopathy. Recovery of a case after heparin and magnesium therapy. Lancet 1966; 01: 237-239.
  • 2 Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int 2001; 60: 831-846.
  • 3 Goldberg RJ, Nakagawa T, Johnson RJ. et al. The role of endothelial cell injury in thrombotic microangiopathy. Am J Kidney Dis 2010; 56: 1168-1174.
  • 4 Desch K, Motto D. Is there a shared pathophysiology for thrombotic thrombocy-topenic purpura and hemolytic-uremic syndrome?. J Am Soc Nephrol 2007; 18: 2457-2460.
  • 5 Jokiranta TS, Zipfel PF, Fremeaux-Bacchi V. et al. Where next with atypical hemo-lytic uremic syndrome?. Mol Immunol 2007; 44: 3889-3900.
  • 6 Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361: 1676-1687.
  • 7 Skerka C, Józsi M, Zipfel PF. et al. Autoantibodies in haemolytic uraemic syndrome (HUS). Thromb Haemost 2009; 101: 227-232.
  • 8 Ying SQ, Fang L, Xiang MX. et al. Protective effects of magnesium against ischae-mia-reperfusion injury through inhibition of P-selectin in rats. Clin Exp Pharmacol Physiol 2007; 34: 1234-1239.
  • 9 Matsushita K, Morrell CN, Cambien B. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 2003; 115: 139-150.
  • 10 Nakayama T, Sato W, Yoshimura A. et al. Endothelial von Willebrand factor release due to eNOS deficiency predisposes to thrombotic microangiopathy in mouse aging kidney. Am J Pathol 2010; 176: 2198-2208.
  • 11 Dran GI, Fernández GC, Rubel CJ. et al. Protective role of nitric oxide in mice with Shiga toxin-induced hemolytic uremic syndrome. Kidney Int 2002; 62: 1338-1348.
  • 12 Kim YG, Suga SI, Kang DH. et al. Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy. Kidney Int 2000; 58: 2390-2399.
  • 13 Maier JA, Malpuech-Brugère C, Zimowska W. et al. Low magnesium promotes en-dothelial cell dysfunction: implications or atherosclerosis, inflammation and thrombosis. Biochym Biophys Acta 2004; 1689: 13-21.
  • 14 Ferrè S, Baldoli E, Leidi M. et al. Magnesium deficiency promotes a pro-athero-genic phenotype in cultured human endothelial cells via NFkB. Biochym Biophys Acta 2010; 1802: 952-958.
  • 15 Maier JA, Bernardini D, Rayssiguier Y. et al. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta 2004; 1689: 6-12.
  • 16 Briel RC, Lippert TH, Zahradnik H P. Action of magnesium sulfate on platelet prostacyclin interaction and prostacyclin of blood vessels. Am J Obstet Gynecol 1985; 153: 232.
  • 17 Dolinsky BM, Ippolito DL, Tinnemore D. et al. The effect of magnesium sulfate on the activity of matrix metalloproteinase-9 in the fetal cord plasma and human umbilical vein endothelial cells. Am J Obstet Gynecol 2010; 203: e1-e5.
  • 18 Demacq C, Metzger IF, Gerlach RF. et al. Inverse relationship between markers of nitric oxide formation and plasma matrix metalloproteinase-9 levels in healthy volunteers. Clin Chim Acta 2008; 394: 72-76.
  • 19 Paravicini TM, Yogi A, Mazur A, et al. Dysregulation of vascular TRPM7 and an-nexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 2009; 53: 423-429.
  • 20 Chacko SA, Song Y, Nathan L. et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 2010; 33: 304-310.
  • 21 Shechter M, Sharir M, Labrador MJ, et al. Oral magnesium therapy improves en-dothelial function in patients with coronary artery disease. Circulation 2000; 102: 2353-2358.
  • 22 Barbagallo M, Dominguez LJ, Galioto A. et al. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res 2010; 23: 131-137.
  • 23 Hadjistavri LS, Sarafidis PA, Georgianos PI. et al. Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit 2010; 16: CR307-CR312.
  • 24 Kishimoto Y, Tani M, Uto-Kondo H. et al. Effects of magnesium on postprandial serum lipid responses in healthy human subjects. Br J Nutr 2010; 103: 469-472.
  • 25 Yokota K, Kato M, Lister F. et al. Clinical efficacy of magnesium supplementation in patients with type 2 diabetes. J Am Coll Nutr 2004; 23: 506S-509S.
  • 26 Howard AB, Alexander RW, Taylor WR. Effects of magnesium on nitric oxide syn-thase activity in endothelial cells. Am J Physiol 1995; 269: C612-C618.
  • 27 Ferrè S, Hoenderop JG, Bindels RJ. Insight into renal Mg2+ transporters. Curr Opin Nephrol Hypertens 2011; 20: 169-176.
  • 28 Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 2008; 294: H1103-H1118.
  • 29 Saris NE, Mervaala E, Karppanen H. et al. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26.
  • 30 Liu F, Huang J, Sadler JE. Shiga toxin (Stx) 1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways. Blood 2011; 118: 3392-3398.
  • 31 Satake K, Lee JD, Shimizu H. et al. Effects of magnesium on prostacyclin synthesis and intracellular free calcium concentration in vascular cells. Magnes Res 2004; 17: 20-27.
  • 32 Dietrich A, Kalwa H, Gudermann T. TRPC channels in vascular cell function. Thromb Haemost 2010; 103: 262-270.
  • 33 Touyz RM, Schiffrin EL. The effect of angiotensin II on platelet intracellular free magnesium and calcium ionic concentrations in essential hypertension. J Hy-pertens 1993; 11: 551-558.
  • 34 Zanchi C, Zoja C, Morigi M. et al. Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. J Immunol 2008; 181: 1460-1469.
  • 35 Touyz RM, Pu Q, He G. et al. Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats: role of reactive oxygen species. J Hypertens 2002; 20: 2221-2232.
  • 36 Dong JF, Cruz MA, Aboulfatova K. et al. Magnesium maintains endothelial integrity, up-regulates proteolysis of ultra-large von Willebrand factor, and reduces platelet aggregation under flow conditions. Thromb Haemost 2008; 99: 586-593.
  • 37 Ravn HB, Vissinger H, Kristensen SD. et al. Magnesium inhibits platelet activity--an in vitro study. Thromb Haemost 1996; 76: 88-93.
  • 38 Corsonello A, Malara A, De Domenico D. et al. Effects of magnesium sulphate on leptin-dependent platelet aggregation: an ex vivo study. Magnes Res 2005; 18: 7-11.
  • 39 Sheu JR, Hsiao G, Shen MY. et al. Mechanisms involved in the antiplatelet activity of magnesium in human platelets. Br J Haematol 2002; 119: 1033-1041.
  • 40 Hsiao G, Shen M Y, Chou DS. et al. Involvement of the antipl atelet a c tiv ity of magnesium sulfate in suppression of protein kinase C and the Na+/H+ exchanger. J Biomed Sci 2004; 11: 19-26.
  • 41 Rukshin V, Shah PK, Cercek B. et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and ep-tifibatide in a canine model of stent thrombosis. Circulation 2002; 105: 1970-1975.
  • 42 Kh R, Khullar M, Kashyap M. et al. Effect of oral magnesium supplementation on blood pressure, platelet aggregation and calcium handling in deoxycorticosterone acetate induced hypertension in rats. J Hypertens 2000; 18: 919-926.
  • 43 Shechter M, Merz CN, Paul-Labrador M. et al. Oral magnesium supplementation inhibits platelet-dependent thrombosis in patients with coronary artery disease. Am J Cardiol 1999; 84: 152-156.
  • 44 Shechter M, Merz CN, Rude RK. et al. Low intracellular magnesium levels promote p latelet-dependent thrombosis in patients wi th coronar y ar ter y d isease. Am Heart J 2000; 140: 212-218.
  • 45 Nadler JL, Malayan S, Luong H. et al. Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus. Diabetes Care 1992; 15: 835-841.
  • 46 Csongrádi E, Nagy Jr B, Fulop T. et al. Increased levels of platelet activation markers are positively associated with carotid wall thickness and other atherosclerotic risk factors in obese patients. Thromb Haemost 2011; 106: 683-692.
  • 47 Sibbing D, Byrne RA, Bernlochner I. et al. High platelet reactivity and clinical outcome - fact and fiction. Thromb Haemost 2011; 106: 191-202.
  • 48 Cesari F, Marcucci R, Gori AM. et al. High platelet turnover and reactivity in renal transplant recipients. Thromb Haemost 2010; 104: 804-810.
  • 49 Randell EW, Mathews M, Gadag V. et al. Relationship between serum magnesium values, lipids and anthropometric risk factors. Atherosclerosis 2008; 196: 413-419.
  • 50 Lima Mde L, Cruz T, Rodrigues LE. et al. Serum and intracellular magnesium deficiency in patients with metabolic syndrome--evidences for its relation to insulin resistance. Diabetes Res Clin Pract 2009; 83: 257-262.
  • 51 Corica F, Corsonello A, Ientile R. et al. Serum ionized magnesium levels in relation to metabolic syndrome in type 2 diabetic patients. J Am Coll Nutr 2006; 25: 210-215.
  • 52 Shechter M. Magnesium and cardiovascular system. Magnes Res 2010; 23: 60-72.
  • 53 Pham PC, Pham PM, Pham SV. et al. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2007; 02: 366-373.
  • 54 Van Laecke S, Van Biesen W, Verbeke F. et al. Posttransplantation hypomagnese-mia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am J Transplant 2009; 09: 2140-2149.
  • 55 Barton CH, Vaziri ND, Martin DC. et al. Hypomagnesemia and renal magnesium wasting in renal transplant recipients receiving cyclosporine. Am J Med 1987; 83: 693-699.
  • 56 Kempfert J, Behrends S. Analysis of nitric oxide-sensitive guanylyl cyclase in humans platelets before and after aggregation. Platelets 2003; 14: 429-435.
  • 57 Hwang DL, Ye n C F, Nadler JL. Insulin increases intracellular magnesium transport in human platelets. J Clin Endocrinol Metab 1993; 76: 549-553.
  • 58 Takaya J, Higashino H, Miyazaki R. et al. Effects of insulin and insulin-like growth factor-1 on intracellular magnesium in platelets. Exp Mol Pathol 1998; 65: 104-109.
  • 59 Randriamboavonjy V, Fleming I. Insulin, insulin resistance, and platelet signaling in diabetes. Diabetes Care 2009; 32: 528-530.
  • 60 Acevedo F, Vesterberg O. Nickel and cobalt activate complement factor C3 faster than magnesium. Toxicology 2003; 185: 9-16.
  • 61 Maeda S, Nagasawa S. Effect of sodium chloride concentration on fluid-phase assembly and stability of the C3 convertase of the classical pathway of the complement system. Biochem J 1990; 271: 749-754.
  • 62 Fishelson Z, Müller-Erberhard HJ. C3 convertase of human complement: enhanced formation and stability of the enzyme generated with nickel instead of magnesium. J Immunol 1982; 129: 2603-2607.
  • 63 Bussiere FI, Tridon A, Zimowska W. et al. Increase in complement component C3 is an early response to experimental magnesium deficiency in rats. Life Sci 2003; 73: 499-507.
  • 64 Erickson YO, Samia NI, Bedell B. et al. Elevated procalcitonin and C-reactive protein as potential biomarkers of sepsis in a subpopulation of thrombotic micro-angiopathy patients. J Clin Apher 2009; 24: 150-154.
  • 65 Bernardo A, Ball C, Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 2004; 104: 100-106.
  • 66 Shariatmadar S, Nassiri M, Vincek V. Effect of plasma exchange on cytokines measured by multianalyte bead array in thrombotic thrombocytopenic purpura. Am J Hematol 2005; 79: 83-88.
  • 67 Claus RA, Bockmeyer CL, Budde U. et al. Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb Haemost 2009; 101: 239-247.
  • 68 Ferraris V, Acquier A, Ferraris JR. et al. Oxidative stress status during the acute phase of haemolytic uraemic syndrome. Nephrol Dial Transplant 2011; 26: 858-864.
  • 69 Stenvinkel P. Endothelial dysfunction and inflammation-is there a link?. Nephrol Dial Transplant 2001; 16: 1968-1971.
  • 70 Bhagat K, Vallance P. Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 1997; 96: 3042-3047.
  • 71 Sontia B, Montezano AC, Paravicini T. et al. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension 2008; 51: 915-921.
  • 72 Mazur A, Maier JA, Rock E. et al. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 2007; 458: 48-56.
  • 73 Altura BM, Kostellow AB, Zhang A. et al. Expression of the nuclear factor-kappaB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells: possible links to hypertension, atherogenesis, and stroke. Am J Hypertens 2003; 16: 701-707.
  • 74 Shogi T, Miyamoto A, Ishiguro S. et al. Enhanced release of IL-1beta and TNF-alpha following endotoxin challenge from rat alveolar macrophages cultured in low-mg(2+) medium. Magnes Res 2003; 16: 111-119.
  • 75 Martin H, Abadie C, Heyd B. et al. N-acetylcysteine partially reverses oxidative stress and apoptosis exacerbated by Mg-deficiency culturing conditions in primary cultures of rat and human hepatocytes. J Am Coll Nutr 2006; 25: 363-369.
  • 76 Wolf FI, Trapani V, Simonacci M. et al. Magnesium deficiency and endothelial dysfunction: is oxidative stress involved?. Magnes Res 2008; 21: 58-64.
  • 77 Freedman AM, Mak IT, Stafford RE. et al. Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 1992; 262: C1371-C1375.
  • 78 Tejero-Taldo MI, Kramer JH, Mak Iu T. et al. The nerve-heart connection in the pro-oxidant response to Mg-deficiency. Heart Fail Rev 2006; 11: 35-44.
  • 79 Nadler JL, Buchanan T, Natarajan R. et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993; 21: 1024-1029.
  • 80 Kim DJ, Xun P, Liu K. et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010; 33: 2604-2610.
  • 81 Greenfield JR, Campbell LV. Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'?. Curr Diabetes Rev 2006; 02: 195-211.
  • 82 Diamant M, Lamb HJ, van de Ree MA. et al. The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 1495-1501.
  • 83 Yasmin McEniery CM, Wallace S, et al. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler Thromb Vasc Biol 2004; 24: 969-974.
  • 84 Van Laecke S, Marechal C, Verbeke F. et al. The relation between hypomagnesae-mia and vascular stiffness in renal transplant recipients. Nephrol Dial Transplant 2011; 26: 2362-2369.
  • 85 Van Laecke S, Desideri F, Geerts A. et al. Hypomagnesemia and the risk of new-onset diabetes after liver transplantation. Liver Transpl 2010; 16: 1278-1287.
  • 86 Kao WH, Folsom AR, Nieto FJ. et al. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 1999; 159: 2151-2159.
  • 87 Guerrero-Romero F, Rascón-Pacheco RA, Rodríguez-Morán M. et al. Hypomag-nesaemia and risk for metabolic glucose disorders: a 10-year follow-up study. Eur J Clin Invest 2008; 38: 389-396.
  • 88 Almoznino-Sarafian D, Berman S, Mor A. et al. Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration?. Eur J Nutr 2007; 46: 230-237.
  • 89 Germain AM, Romanik MC, Guerra I. et al. Endothelial dysfunction: a links among preeclampsia, recurrent pregnancy loss, and future cardiovascular events?. Hypertension 2007; 49: 90-95.
  • 90 Lattuada A, Rossi E, Calzarossa C. et al. Mild to moderate reduction of a von Willebrand factor cleaving factor protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica 2003; 88: 1029-1034.
  • 91 Resnick LM, Barbagallo M, Bardicef M. et al. Cellular-free magnesium depletion in brain and muscle of normal and preeclamptic pregnancy: a nuclear magnetic resonance spectroscopic study. Hypertension 2004; 44: 322-326.
  • 92 Adam B, Malatyalioglu E, Alvur M. et al. Magnesium, zinc and iron levels in pre-eclampsia. J Matern Fetal Med 2001; 10: 246-250.
  • 93 Steegers EA, von Dadelszen P, Duvekot JJ. et al. Pre-eclampsia. Lancet 2010; 376: 631-644.
  • 94 Altman D, Carroli G, Duley L. et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet 2002; 359: 1877-1890.
  • 95 Duley L, Gülmezoglu AM, Henderson-Smart DJ. et al. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. Cochrane Database Syst Rev 2010; 10: CD000025.
  • 96 Ariza AC, Bobadilla N, Diaz L. et al. Placental gene expression of calcitonin gene-related peptide and nitric oxide synthases in preeclampsia: effects of magnesium sulfate. Magnes Res 2009; 22: 44-49.
  • 97 Mastrogiannis DS, Kalter CS, O'Brien WF. et al. Effect of magnesium sulfate on plasma endothelin-1 levels in normal and preeclamptic pregnancies. Am J Obstet Gynecol 1992; 167: 1554-1559.
  • 98 Norris LA, Gleeson N, Sheppard BL. et al. Whole blood platelet aggregation in moderate and severe pre-eclampsia. Br J Obstet Gynaecol 1993; 100: 684-688.
  • 99 Robb AO, Din JN, Mills NL. et al. The influence of the menstrual cycle, normal pregnancy and pre-eclampsia on platelet activation. Thromb Haemost 2010; 103: 372-378.
  • 100 Rochelson B, Dowling O, Schwartz N. et al. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J Reprod Immunol 2007; 73: 101-107.
  • 101 Salmon JE, Heuser C, Triebwasser M. et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med 2011; 08: e1001013.
  • 102 Qing X, Redecha PB, Burmeister MA. et al. Targeted inhibition of complement activation prevents features of preeclampsia in mice. Kidney Int 2011; 79: 331-339.
  • 103 Fakhouri F, Roumenina L, Provot F. et al. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 2010; 21: 859-867.
  • 104 van den Born BJ, Löwenberg EC, van der Hoeven N V. et al. Endothelial dysfunction, platelet activation, thrombogenesis and fibrinolysis in patients with hypertensive crisis. J Hypertens 2011; 29: 922-927.
  • 105 Touyz RM, Milne FJ. Alterations in intracellular cations and cell membrane AT-Pase activity in patients with malignant hypertension. J Hypertens 1995; 13: 867-874.
  • 106 Laurant P, Berthelot A. Endothelin-1-induced contraction in isolated aortae from normotensive and DOCA-salt hypertensive rats: effect of magnesium. Br J Pharmacol 1996; 119: 1367-1374.
  • 107 van den Born BJ, Koopmans R P, van Montfrans GA. The renin-angiotensin system in malignant hypertension revisited: plasma renin activity, microangio-pathic hemolysis, and renal failure in malignant hypertension. Am J Hypertens 2007; 20: 900-906.
  • 108 Akimoto T, Muto S, Ito C. et al. Clinical features of malignant hypertension with thrombocytic microangiopathy. Clin Exp Hypertens 2011; 33: 77-83.
  • 109 Thum T, Schmitter K, Fleissner F. et al. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans. Eur Heart J 2011; 32: 1275-1286.
  • 110 Nishizaka MK, Zaman MA, Green SA. et al. Impaired endothelium-dependent flow-mediated vasodilatation in hypertensive subjects with hyperaldosteronism. Circulation 2004; 109: 2857-2861.
  • 111 Horton R, Biglieri EG. Effect of aldosterone on the metabolism of magnesium. J Clin Endocrinol Metab 1962; 22: 1187-1192.
  • 112 Delva P, Pastori C, Degan M. et al. Intralymphocyte free magnesium in patients with primary aldosteronism: aldosterone and lymphocyte magnesium home-ostasis. Hypertension 2000; 35: 113-117.
  • 113 Yogi A, Callera GE, O'Connor SE. et al. Dysregulation of renal transient receptor potential melastatin 6/7 but not paracellin-1 in aldosterone-induced hypertension and kidney damage in a model of hereditary hypomagnesemia. J Hypertens 2011; 29: 1400-1410.
  • 114 Ichihara A, Suzuki H, Saruta T. Effects of magnesium on the renin-angiotensin-aldosterone system in human subjects. J Lab Clin Med 1993; 122: 432-440.
  • 115 Gao X, Peng L, Adhikari CM. et al. Spironolactone reduced arrhytmia and maintained magnesium homeostasis in patients with congestive heart failure. J Card Fail 2007; 13: 170-177.
  • 116 Noris M, Remuzzi G. Thrombotic microangiopathy after kidney transplantation. Am J Transplant 2010; 10: 1517-1523.
  • 117 Burdmann EA, Andoh TF, Yu L. et al. Cyclosporine nephrotoxicity. Semin Neph-rol 2003; 23: 465-476.
  • 118 Yuan J, Zhou J, Chen BC. et al. Magnesium supplementation prevents chronic cyclosporine nephrotoxicity via adjusting nitric oxide synthase activity. Transplant Proc 2005; 37: 1892-1895.
  • 119 Miura K, Nakatani T, Asai T. et al. Role of hypomagnesemia in chronic cyclospo-rine nephropathy. Transplantation 2002; 73: 340-347.
  • 120 Eremina V, Jefferson JA, Kowalewska J. et al. VEGF inhibition and renal throm-botic microangiopathy. N Engl J Med 2008; 358: 1129-1136.
  • 121 Bollee G, Patey N, Cazajous G. et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 2009; 24: 682-685.
  • 122 Pelle G, Shweke N, Duong Van Huyen JP. et al. Systemic and kidney toxicity of intraocular administration of vascular endothelial growth factor inhibitors. Am J Kidney Dis 2011; 57: 756-759.
  • 123 Suga S, Kim YG, Joly A. et al. Vascular endothelial growth factor (VEGF 121) protects rats from renal infarction in thrombotic microangiopathy. Kidney Int 2001; 60: 1297-1308.
  • 124 Hong BZ, Kang HS, So JN. et al. Vascular endothelial growth factor increases the intracellular magnesium. Biochem Biophys Res Commun 2006; 347: 496-501.
  • 125 Maynard SE, Min JY, Merchan J. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649-658.
  • 126 Siegler RL, Obrig TG, Pysher TJ. et al. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr Nephrol 2003; 18: 92-96.
  • 127 Feys HB, Roodt J, Vandeputte N. et al. Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood 2010; 116: 2005-2010.
  • 128 Caprioli J, Remuzzi G, Noris M. Thrombotic microangiopathies: from animal models to human disease and cure. Contrib Nephrol 2011; 169: 337-350.