Thromb Haemost 2010; 104(01): 172-182
DOI: 10.1160/TH09-07-0447
New Technologies, Diagnostic Tools and Drugs
Schattauer GmbH

RGD-dependent binding of TP508 to integrin αvβ3 mediates cell adhesion and induction of nitric oxide

Dmitry N. Derkach*
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Subhagya A. Wadekar*
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Kim B. Perkins
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Emma Rousseau
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Catherine M. Dreiza
1   Capstone Therapeutics, Tempe, Arizona, USA
2   Applied Sciences and Mathematics, Arizona State University, Tempe, Arizona, USA
,
Joyce Cheung-Flynn
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Heidi C. Ramos
1   Capstone Therapeutics, Tempe, Arizona, USA
,
Tatiana P. Ugarova
3   Center for Metabolic Biology, Arizona State University, Tempe, Arizona, USA
,
Michael R. Sheller
1   Capstone Therapeutics, Tempe, Arizona, USA
› Author Affiliations
Financial support: This work was funded entirely by Capstone Therapeutics (Tempe, AZ, USA).
Further Information

Publication History

Received: 09 July 2009

Accepted after major revision: 10 March 2010

Publication Date:
23 November 2017 (online)

Summary

P508, a 23-amino acid RGD-containing synthetic peptide representing residues 508 to 530 of human prothrombin, mitigates the effects of endothelial dysfunction in ischaemic reperfusion injury. The objective of this study was to investigate whether TP508 binds to members of the integrin family of transmembrane receptors leading to nitric oxide synthesis. Immobilised TP508 supported adhesion of endothelial cells and αvβ3-expressing human embryonic kidney cells in a dose- and RGD-dependent manner. Soluble TP508 also inhibited cell adhesion to immobilised fibrinogen. The involvement of αvβ3 was verified with function-blocking antibodies and surface plasmon resonance studies. Adhesion of the cells to immobilised TP508 resulted in an induction of phosphorylated FAK and ERK1/2. In endothelial cells, TP508 treatment resulted in an induction of nitric oxide that could be inhibited by LM609, an αvβ3-specific, function-blocking monoclonal antibody. Finally, TP508 treatment of isolated rat aorta segments enhanced carbachol-induced vasorelaxation. These results suggest that TP508 elicits a potentially therapeutic effect through an RGD-dependent interaction with integrin αvβ3.

* These authors contributed equally to this work.


 
  • References

  • 1 Lerman A, Burnett Jr JC. Intact and altered endothelium in regulation of vasomotion. Circulation 1992; 86: III12-19.
  • 2 Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation research 2000; 87: 840-844.
  • 3 Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 2005; 01: 183-198.
  • 4 Suzuki M, Takamisawa I, Yoshimasa Y. et al. Association between insulin resistance and endothelial dysfunction in type 2 diabetes and the effects of pioglitazone. Diabetes research and clinical practice 2007; 76: 12-17.
  • 5 Rikitake Y, Kim HH, Huang Z. et al. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36: 2251-2257.
  • 6 Lloyd-Jones DM, Bloch KD. The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med 1996; 47: 365-375.
  • 7 Egashira K. Clinical importance of endothelial function in arteriosclerosis and ischemic heart disease. Circ J 2002; 66: 529-533.
  • 8 Katz SD, Hryniewicz K, Hriljac I. et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 2005; 111: 310-314.
  • 9 Boulanger CM. Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 1999; 31: 39-49.
  • 10 Simonsen U, Rodriguez-Rodriguez R, Dalsgaard T. et al. Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation. Pharmacol Rep 2009; 61: 105-115.
  • 11 Fossum T, Olszewska-Pazdrak B, Mertens M. et al. TP508 (Chrysalin) reverses endothelial dysfunction and increases perfusion and myocardial function in hearts with chronic ischemia J Cardiovasc Pharmacol Ther. 2008; 13: 214-225.
  • 12 Osipov R, Bianchi C, Clements R. et al. Thrombin fragment (TP508) decreases myocardial infarction and apoptosis after ischemia reperfusion injury. Ann Thorac Surg 2009; 87: 786-793.
  • 13 Osipov R, Robich M, Feng J. et al. The effect of thrombin fragment (TP508) on myocardial ischemia reperfusion injury in hypercholesterolemic pigs. J Appl Physiol 2009; 106: 1993-2001.
  • 14 Glenn K, Frost G, Bergmann J. et al. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res 1988; 01: 65-73.
  • 15 Bar-Shavit R, Sabbah V, Lampugnani MG. et al. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol 1991; 112: 335-344.
  • 16 Papaconstantinou M, Carrell C, Pineda A. et al. Thrombin functions through its RGD sequence in a non-canonical conformation. J Biol Chem 2005; 280: 29393-29396.
  • 17 Bar-Shavit R, Eskohjido Y, Fenton JW. et al. Thrombin adhesive properties: induction by plasmin and heparan sulfate. J Cell Biol 1993; 123: 1279-1287.
  • 18 Tsopanoglou N, Papaconstantinou M, Flordellis C. et al. On the mode of action of thrombin-induced angiogenesis: thrombin peptide, TP508, mediates effects in endothelial cells via alphavbeta3 integrin. Thromb Haemost 2004; 92: 846-857.
  • 19 Tsopanoglou NE, Andriopoulou P, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. American journal of physiology 2002; 283: C1501-1510.
  • 20 Sajid M, Zhao R, Pathak A. et al. Alphavbeta3-integrin antagonists inhibit thrombin-induced proliferation and focal adhesion formation in smooth muscle cells. American journal of physiology 2003; 285: C1330-1338.
  • 21 Stouffer GA, Smyth SS. Effects of thrombin on interactions between beta3-inte-grins and extracellular matrix in platelets and vascular cells. Arterioscler Thromb Vasc Biol 2003; 23: 1971-1978.
  • 22 Yakubenko VP, Lishko VK, Lam SC. et al. A molecular basis for integrin alphaM-beta 2 ligand binding promiscuity. J Biol Chem 2002; 277: 48635-48642.
  • 23 Yakubenko VP, Yadav SP, Ugarova TP. Integrin alphaDbeta2, an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 2006; 107: 1643-1650.
  • 24 Bhattacharya S, Fu C, Bhattacharya J. et al. Soluble ligands of the alpha v beta 3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J Biol Chem 1995; 270: 16781-16787.
  • 25 Boyle JG, Logan PJ, Ewart MA. et al. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 2008; 283: 11210-11217.
  • 26 Komalavilas P, Penn RB, Flynn CR. et al. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation. Am J Physiol Lung Cell Mol Physiol 2008; 294: L69-78.
  • 27 Bodary SC, McLean JW. The integrin beta 1 subunit associates with the vitronectin receptor alpha v subunit to form a novel vitronectin receptor in a human embryonic kidney cell line. J Biol Chem 1990; 265: 5938-5941.
  • 28 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028-1032.
  • 29 Fossum TW, Olszewska-Pazdrak B, Mertens MM. et al. TP508 (Chrysalin(R)) Reverses Endothelial Dysfunction and Increases Perfusion and Myocardial Function in Hearts With Chronic Ischemia. J Cardiovasc Pharmacol Therap 2008; 13: 214-225.
  • 30 Urbinati C, Mitola S, Tanghetti E. et al. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2005; 25: 2315-2320.
  • 31 Suehiro K, Mizuguchi J, Nishiyama K. et al. Fibrinogen binds to integrin alpha(5)beta(1) via the carboxyl-terminal RGD site of the Aalpha-chain. J Biochem 2000; 128: 705-710.
  • 32 Chen Q, Kinch MS, Lin TH. et al. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 1994; 269: 26602-26605.
  • 33 Morino N, Mimura T, Hamasaki K. et al. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem 1995; 270: 269-273.
  • 34 Naldini A, Carraro F, Baldari C. et al. The thrombin peptide, TP508, enhances cytokine release and activates signaling events. Peptides 2004; 25: 1917-1926.
  • 35 Koshida R, Rocic P, Saito S. et al. Role of focal adhesion kinase in flow-induced dilation of coronary arterioles. Arterioscler Thromb Vasc Biol 2005; 25: 2548-2553.
  • 36 Katsumi A, Orr AW, Tzima E. et al. Integrins in mechanotransduction. J Biol Chem 2004; 279: 12001-12004.
  • 37 Mineo C, Yuhanna IS, Quon MJ. et al. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 2003; 278: 9142-9149.
  • 38 Urano T, Ito Y, Akao M. et al. Angiopoietin-related growth factor enhances blood flow via activation of the ERK1/2-eNOS-NO pathway in a mouse hind-limb ischemia model. Arterioscler Thromb Vasc Biol 2008; 28: 827-834.
  • 39 Lovren F, Pan Y, Shukla PC. et al. Visfatin (nicotinomide phosphoribosyltrans-ferase/pre-B cell colony-enhancing factor) activates eNOS via Akt and MAP kinases and improves endothelial function. Am J Physiol Endocrinol Metab 2009; 296: E1440-1449.
  • 40 Vu T, Hung D, Wheaton V. et al. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057-1068.
  • 41 Ishihara H, Connolly A, Zeng D. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 1997; 386: 502-506.
  • 42 Kahn ML, Zheng YW, Huang W. et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690-694.
  • 43 Xu WF, Andersen H, Whitmore TE. et al. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 1998; 95: 6642-6646.
  • 44 Sajid M, Stouffer GA. The role of alpha(v)beta3 integrins in vascular healing. Thromb Haemost 2002; 87: 187-193.
  • 45 Hein TW, Platts SH, Waitkus-Edwards KR. et al. Integrin-binding peptides containing RGD produce coronary arteriolar dilation via cyclooxygenase activation. Am J Physiol Heart Circ Physiol 2001; 281: H2378-2384.
  • 46 Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circulation Res 2002; 91: 769-775.