Thromb Haemost 2009; 101(05): 860-866
DOI: 10.1160/TH08-08-0556
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects

Thales R. Cipriani
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
,
Ana Helena P. Gracher
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
,
Lauro M. de Souza
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
,
Roberto J. C. Fonseca
2   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Celso L. R. Belmiro
2   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Philip A. J. Gorin
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
,
Guilherme L. Sassaki
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
,
Marcello Iacomini
1   Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
› Author Affiliations
Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária and PRONEX-Carboidratos.
Further Information

Publication History

Received: 01 September 2008

Accepted after major revision: 17 February 2009

Publication Date:
24 November 2017 (online)

Summary

Evaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1→4)-linked α-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent anti-thrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit α-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent.

 
  • References

  • 1 White RH. The epidemiology of venous thromboembolism. Circulation 2003; 107: I-4-I-8.
  • 2 Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet 1999; 353: 1167-1173.
  • 3 Mourão PAS, Pereira MS. Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends Cardiovasc Med 1999; 09: 225-232.
  • 4 Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 1985; 43: 51-134.
  • 5 Bourin MC, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993; 289: 313-330.
  • 6 Mousa SA. Heparin, low molecular weight heparin, and derivatives in thrombosis, angiogenesis, and inflammation: emerging links. Semin Thromb Hemost 2007; 33: 524-533.
  • 7 Hirsh J, Levine MN. Low-molecular-weight heparin. Blood 1992; 79: 1-18.
  • 8 Weitz JI. Low-molecular-weight heparins. N Engl J Med 1997; 337: 688-698.
  • 9 Mourão PAS, Pereira MS, Pavão MSG. et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm: sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996; 271: 23973-23984.
  • 10 Pereira MS, Mulloy B, Mourão PAS. Structure and anticoagulant activity of sulfated fucans: comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 1999; 274: 7656-7667.
  • 11 Martinichen-Herrero JC, Carbonero ER, Gorin PAJ. et al. Anticoagulant and antithrombotic activity of sulfate obtained from a glucan component of the lichen Parmotrema mantiqueirense Hale. Carbohydr Polym 2005; 60: 7-13.
  • 12 Martinichen-Herrero JC, Carbonero ER, Sassaki GL. et al. Anticoagulant and antithrombotic activies of a chemically sulfated galactomannan obtained from the lichen Cladonia ibitipocae . Int J Biol Macromol 2005; 35: 97-102.
  • 13 Melo FR, Mourão PAS. An algal sulfated galactan has an unusual dual effect on venous thrombosis due to activation of factor XII and inhibition of the coagulation proteases. Thromb Haemost 2008; 99: 531-538.
  • 14 Fonseca RJC, Oliveira SMCG, Melo FR. et al. Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb Haemost 2008; 99: 539-545.
  • 15 O’Neill AN. Sulphated derivatives of laminarin. Can J Chem 1955; 33: 1097-1101.
  • 16 Sassaki GL, Souza LM, Cipriani TR, Iacomini M. TLC of carbohydrates. In: Thin Layer Chromatography in Phytochemistry. CRC Press; 2008: 255-276.
  • 17 Taylor RL, Conrad HE. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry 1972; 11: 1383-1388.
  • 18 Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 1984; 131: 209-217.
  • 19 Sassaki GL, Gorin PAJ, Souza LM. et al. Rapid synthesis of partially O-methylated alditol acetate standards for GC-MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. Carbohydr Res 2005; 340: 731-739.
  • 20 Vogel GMT, Meuleman DG, Bourgondiën FGM. et al. Comparison of two experimental thrombosis models in rats: effects of four glycosaminoglycans. Thromb Res 1989; 54: 399-410.
  • 21 Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929.
  • 22 Reid JSG. Carbohydrate metabolism: structural carbohydrates. In: Plant Biochemistry. Acad Press; 1997: 205-236.
  • 23 Renard CMGC, Lahaye M, Mutter M. et al. Isolation and structural characterization of rhamnogalacturonan oligomers generated by controlled acid hydrolysis of sugar-beet pulp. Carbohydr Res 1998; 305: 271-280.
  • 24 Tamaki Y, Konishi T, Masakazu F. et al. Isolation and structural characterisation of pectin from endocarp of Citrus depressa . Food Chem 2008; 107: 352-361.
  • 25 Hoffman J, Larm O, Larsson K. Studies on the blood-anticoagulant activity of sulphated polysaccharides with different uronic acid content. Carbohydr Polym 1982; 02: 115-121.
  • 26 Nagase H, Enjyoji K, Minamiguchi K. et al. Depolymerized holothurian glycosaminoglycan with novel anticoagulant actions: antithrombin III- and heparin cofactor II-independent inhibition of factor X activation by factor IXa-factor VIIIa complex and heparin cofactor II-dependent inhibition of thrombin. Blood 1995; 85: 1527-1534.
  • 27 Glauser BF, Pereira MS, Monteiro RQ. et al. Serpin-independent anticoagulant activity of a fucosylated chondroitin sulfate. Thromb Haemost 2008; 100: 420-428.
  • 28 Hirsh J, Weitz JI. New antithrombotic agents. Lancet 1999; 353: 1431-1436.
  • 29 Kishimoto TK, Viswanathan K, Ganguly T. et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. New Engl J Med 2008; 358: 2457-2467.